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Abstract

Following an introduction to the context of Human-Level Artificial Intelligence (HLAI)
and (computational) analogy research, a formal analysis assessing and qualifying the
suitability of the Heuristic-Driven Theory Projection (HDTP) analogy-making framework
for HLAI purposes is presented. An account of the application of HDTP (and analogy-
based approaches in general) to the study and computational modeling of conceptual
blending is outlined, before a proposal and initial proofs of concept for the application of
computational analogy engines to modeling and analysis questions in education studies,
teaching research, and the learning sciences are described.
Subsequently, the focus is changed from analogy-related aspects in learning and con-

cept generation to rationality as another HLAI-relevant cognitive capacity. After out-
lining the relation between AI and rationality research, a new conceptual proposal for
understanding and modeling rationality in a more human-adequate way is presented,
together with a more specific analogy-centered account and an architectural sketch for
the (re)implementation of certain aspects of rationality using HDTP.
The methods and formal framework used for the initial analysis of HDTP are then

applied for proposing general guiding principles for models and approaches in HLAI,
together with a proposal for a formal characterization grounding the notion of heuristics
as used in cognitive and HLAI systems as additional application example.
Finally, work is reported trying to clarify the scientific status of HLAI and participat-

ing in the debate about (in)adequate means for assessing the progress of a computational
system towards reaching (human-level) intelligence.

Two main objectives are achieved: Using analogy as starting point, examples are given
as inductive evidence for how a cognitively-inspired approach to questions in HLAI can
be fruitful by and within itself. Secondly, several advantages of this approach also with
respect to overcoming certain intrinsic problems currently characterizing HLAI research
in its entirety are exposed. Concerning individual outcomes, an analogy-based proposal
for theory blending as special form of conceptual blending is exemplified; the usefulness
of computational analogy frameworks for understanding learning and education is shown
and a corresponding research program is suggested; a subject-centered notion of rational-
ity and a sketch for how the resulting theory could computationally be modeled using an
analogy framework is discussed; computational complexity and approximability consid-
erations are introduced as guiding principles for work in HLAI; and the scientific status
of HLAI, as well as two possible tests for assessing progress in HLAI, are addressed.
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1. Opening Remarks

The present doctoral thesis includes work published in sixteen peer-reviewed conference
or symposium contributions and book chapters which — although when seen individually
might seem fairly heterogeneous — can all be subsumed under the overall headline of ‘cog-
nitive aspects of Human-Level Artificial Intelligence’ research. This synopsis shall offer
a concise but nonetheless accessible and comprehensive overview of the conducted work
program and its main results. The individual chapters give a summary of the correspond-
ing topical sub-projects, referring the interested reader to the respective publications in
Part IV for details.
The following chapters present, after a short introduction to the overall context in

Chap. 2, the outcomes of different interrelated sub-projects performed over the course of
the last three years. Some of these investigations are fairly exploratory in nature, trying
to identify approaches and to establish basic parts of conceptual frameworks address-
ing previously ignored topics (as, for example, the work on introducing computational
analogy engines into the study of learning and education described in Chap. 5, or the
proposals for more adequate and cognition-based perspectives on rationality in the con-
text of Artificial Intelligence in Chap. 6). Others are situated more within the “classical”
territory of Human-Level Artificial Intelligence (HLAI) research such as, for instance,
the results presented in Chap. 3 dealing with aspects of the computational complexity
and approximability of the Heuristic-Driven Theory Projection (HDTP) analogy engine
or the considerations addressing the scientific status of HLAI and the quest for a proper
test for (human-level) machine intelligence in Chap. 8
The line of narrative stringing together the individual parts follows a natural progres-

sion: After the introduction of the framing background of HLAI and (computational)
analogy research in Chap. 2, an analysis assessing and qualifying HDTP’s suitability for
HLAI purposes is presented in Chap. 3. The following Chap. 4 then gives an account of a
first (mostly exploratory) application scenario for HDTP (and analogy-based approaches
in general) to an important question in HLAI, namely to the study and modeling of con-
ceptual blending with computational means. A second applied sub-project, summarized
in Chap. 5, describes a proposal and initial proofs of concept for the application of com-
putational analogy engines to modeling and analysis questions in education and teaching
research and the learning sciences. Chap. 6 subsequently changes the focus from analogy-
related aspects in learning and concept generation to another HLAI-relevant cognitive
capacity, namely rationality. After describing the relation between AI and rationality
research in a quite general fashion, a new conceptual proposal for understanding and
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1. Opening Remarks

modeling rationality in a more human-adequate way is presented, together with a more
specific analogy-centered account and an architectural sketch for the (re)implementation
of certain aspects of rationality using HDTP. Chap. 7 then returns to the methods and
formal framework used for the initial analysis of HDTP in Chap. 3 and shows how these
can be relevant to HLAI research in general (also providing a second application exam-
ple, namely a proposal for a formal characterization grounding the notion of heuristics as
used in cognitive and HLAI systems). The penultimate Chap. 8 closes the circle in con-
ceptually bridging back to the introduction to HLAI from the first chapter by reporting
on work trying to clarify the scientific status of HLAI and participating in the debate
about (in)adequate means for assessing the progress of a computational system towards
reaching (human-level) intelligence. Chap. 9 finally gives some concluding remarks.

But before delving into the academic content of this thesis, a short clarification and/or
disclaimer seems in place: Many of the questions addressed as part of the presented re-
search effort are subject of ongoing study and (often heated) active debate within the
respective scientific communities. In taking the particular approach presented throughout
this thesis I do not want to claim that mine is the only possible or admissible perspective
on the discussed issues, nor do I want to claim necessary superiority over alternative
views. I rather want to show that the methods (and corresponding conceptual decisions)
underlying my work can fruitfully be applied in the study of HLAI, emphasizing ad-
vantages by virtue of obtained positive results rather than by confrontation with (and
subsequent dismissal of) competing conceptions.
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2. Introduction to the Field(s)

Before addressing the individual lines of work unified in this thesis in Chap. 3 to 8, I
want to give a short introduction to the two main pillars and connecting motives tying
together the overall research project: HLAI as a quite specific research program, and
computational analogy-making as one of the former’s earliest, and ever since most active,
core topics.
Therefore, in the following section I first give an orienting overview of HLAI as a field,

providing the framing context and the background against which the work presented
in subsequent chapters should be seen.1 In the second section of the chapter, I offer a
short introduction to the topic(s) of analogy and computational analogy-making, rooting
work on computational models and systems for analogy-making in corresponding studies
of analogy as a key mental function or facility from psychology and cognitive science.
Overviews of technical notions and definitions relevant at different points throughout the
thesis are given as appendix in Part II.

2.1. Human-Level Artificial Intelligence

When screening the literature from the early days of Artificial Intelligence (AI) research
until today for a commonly agreed upon definition of what AI as a field of study is and
what its aims are, it becomes very quickly obvious that there is no such thing as the
desired universally hailed account of concept, means and goals. Still, in order to be able
to introduce the notion of HLAI, standing at the core of this thesis, a definition of AI
has to be fixed. Therefore, I adapt a phrasing originally to be found in the preface of
Nilsson (2009): AI is that science devoted to making machines intelligent, and intelligence
is that quality that enables an entity to function appropriately and with foresight in its
environment.
This understanding of AI is very inclusive, introducing a continuum of capacity levels

ranging from fairly low-level technological systems and lower animals at the one end to
humans (and possibly beyond) on the other end. HLAI is situated at the latter end of
the just described spectrum, aiming at developing machines which can meaningfully be
considered to be on par with humans in that they are similarly able to — among many
others — reason, pursue and achieve goals, perceive and respond to different types of

1For a by far more detailed and complete description and assessment of past and present AI and
HLAI research, see, for instance, Nilsson (2009).
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2. Introduction to the Field(s)

stimuli from their environment (also, but not only, including language), process informa-
tion, or engage in scientific and creative activities.2 Still, neither AI nor HLAI by any
means have to confine themselves to methods which are strictly biologically observable.
Instead, for the time being, whatever technologically realizable means of (re)creating in-
telligence in an artificial system can be brought forward, have to and will be considered
valid contributions to the research endeavor.
The history of HLAI goes back to the very origin of AI research. According to Mc-

Carthy (2007), the “first scientific discussion of human-level machine intelligence was
apparently by Alan Turing” in a lecture to the London Mathematical Society in 1947, by
this seemingly predating even Turing (1969)3 and Turing (1950) (the latter of which is
more commonly taken as the starting point of AI and HLAI history alike). A few years
later, in his 1956 proposal for the Dartmouth Summer Study, John McCarthy famously
laid out the program for generations of researchers to follow: “The study is to proceed on
the basis of the conjecture that every aspect of learning or any other feature of intelli-
gence can in principle be so precisely described that a machine can be made to simulate
it.”.4

And indeed, the spirit of McCarthy’s just quoted statement still fuels each and every
research endeavor in HLAI. Although there might be disagreement about the precise
interpretation of “precisely described” or “simulate”, and some researchers might want to
expand the original phrasing in one way or another, HLAI as a field still rests on the as-
sumption that the (re)creation of human-level intelligence by artificial means is possible
and will eventually be achieved by scientific means. Clearly, over the decades different
schools of thought left their traces also within HLAI research — such as, for example, the
Physical Symbol System Hypothesis (Newell (1980)) and the logicist movement (Moore
(1995)), the connectionist turn and the strong bias towards sub-symbolic forms of pro-
cessing (Rumelhart et al. (1986); Smolensky (1987)), or the latest embodiment debates
(Anderson (2003); Chrisley (2003)) — which has led to a certain diversification and
independization between different streams within the overall field.
The present thesis situates itself within a subarea labeled “cognitive Human-Level

Artificial Intelligence”. This particular form of HLAI research is characterized by a strong
inspirational and conceptual connection to results from cognitive science and psychology
in approaching the task of a computational (re)creation of human-level mental faculties.
Furthermore, in the present interpretation it clearly has to be considered to fall under the
computational cognition paradigm as advocated, for instance, by Pylyshyn (1980). Also,
all the models and systems presented and implemented in the context of this thesis are

2The line of research I refer to as HLAI is (in some cases with minor changes in particular research
goals and approaches or overall ambition) also referred to as, among others, Artificial General Intelligence
(AGI), “strong AI”, “full AI”, or “artificial cognition”.

3Originally written as report for the National Physical Laboratory in 1948, but published only
posthumously more than two decades later.

4A reproduction of the original proposal can be found as McCarthy et al. (2006).

18



2.2. Analogy and computational analogy-making

symbolic in nature (i.e., logic-based). Still, this should not be taken as implicit renewal of
the aforementioned Physical Symbol System Hypothesis in its unbending magnitude and
with its extensive ramifications, but is exclusively due to the fact that for the purposes
of the carried out studies a symbolic approach seemed more adequate.

2.2. Analogy and computational analogy-making

During the course of a day, as humans we use different kinds of reasoning processes:
We solve puzzles, play instruments, or discuss problems. Often we will find ourselves in
situations in which we apply our knowledge of a familiar situation to the structurally
similar novel one. Today it is mostly undoubted that one of the basic elements of human
cognition is the ability to see two a priori distinct domains as similar with respect to
certain aspects, either based on their shared relational structure or (to a lesser extent)
appearance — i.e., to recognize analogies and often use them for cross-domain transfer
of knowledge and reasoning.5 Some prominent cognitive scientists — with Hofstadter
(2001) leading the way — even consider analogy the core of cognition itself.
As more cautiously described, for instance, by Schwering et al. (2009c), key abilities

within everyday life, such as communication, social interaction, tool use and the handling
of previously unseen situations crucially rely on the use of analogy-based strategies and
procedures. Relational matching, one of the key mechanisms underlying analogy-making,
is also one of the bases of perception, language, learning, memory and thinking, i.e., the
constituent elements of most conceptions of cognition.6

Whilst analogies can be quite diverse in appearance and usage, it is widely agreed that
on a procedural level at least three steps are indispensable (which also reappear in most,
if not all computational models of analogy-making):

1. Retrieval: Given the target domain of an analogy (e.g., in form of a problem scenario
a reasoner has to confront), the reasoner’s memory has to be queried for similar
cases encountered in the past. Candidate source domains have to be identified and
made available to the analogy process.

2. Mapping: Given the target domain and a source domain (i.e., one of the candidate
domains found during the retrieval step), respective domain elements which are
hypothesized to stand in an analogical relation to each other have to be aligned.
This process of pairing up domain elements can possibly give rise to insights about
the internal structure of the domains, potentially also triggering domain-internal

5This definition implies a very broad conception of analogy, also covering phenomena such as simi-
larity, metaphor and allegory (and, thus, can partially be seen in the Classical Greek tradition of analogy
as shared abstraction described, among others, by Shelley (2003), and as related to the stance taken for
example by Gentner and Markman (1997) for similarity and by Gentner et al. (1988) and Gentner et al.
(2001) for metaphor).

6For an overview of psychological research on analogy see, for instance, Gentner and Smith (2013).
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2. Introduction to the Field(s)

Figure 2.1.: A schematic overview of the standard conceptual approach to computational
analogy-making from Schwering et al. (2009b).

restructuring and new conceptualizations. (In the case of computational analogy-
making, the alignment is mostly based on structural and syntactic properties of
the respective representation formalisms applied in the domains, and the process
of restructuring the domains is called re-representation. See also Fig. 2.1.)

3. Transfer/evaluation: Once a mapping has been established between source and
target domain, knowledge can be transferred from the (better informed) source to
the (more sparse) target domain using the alignments from the mapping phase as
guidance for the potentially needed knowledge adaptation during the cross-domain
transfer. Once the target domain has been enriched, a final step of evaluation
(possibly also involving reasoning within and, once again, restructuring of the target
domain) judges the established analogy. This judgement can then also be used to
decide whether the analogy-making was successful, or if another candidate domain
should be considered instead of the used source domain — either by returning to the
mapping phase and using another candidate from the collection of retrieved cases,
or even by returning to the retrieval phase and (taking into account the insights
about the target domain gained during restructuring and transfer) starting the
entire procedure anew.

Because of the described crucial role of analogy in human cognition researchers on the
computational side of cognitive science and in AI also very quickly got interested in the
topic and have been creating computational models of analogy-making basically since the
advent of computer systems. Although the developed models and implemented systems
differ vastly in their precise specifications and computational paradigms (some being
symbolic, some connectionist, others hybrid), on the level of procedural abstraction most
also adhere to the just outlined retrieval–mapping–transfer/evaluation triad and can be
conceptualized as shown in Fig. 2.1.
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2.2. Analogy and computational analogy-making

The resulting history of computational analogy systems starts with Reitman et al.
(1964)’s ARGUS and Evans (1964)’s ANALOGY in the late 1950s and early 1960s, con-
tains, for instance, Winston (1980)’s work on analogy and learning, and features systems
as prominent as Hofstadter and Mitchell (1994)’s Copycat or Falkenhainer et al. (1989)’s
famous Structure-Mapping Engine and Gentner and Forbus (1991)’s MAC/FAC.7

7For an informative overview of different architectural and conceptual paradigms for computational
analogy engines and of well-known implemented systems see, for example, Besold (2011).
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3. Computational Properties of
Analogy-Making Using the
Heuristic-Driven Theory Projection
Framework

Whilst Falkenhainer et al. (1989)’s Structure-Mapping Engine and Gentner and Forbus
(1991)’s MAC/FAC, mentioned at the end of the previous chapter, implement a ver-
sion of Gentner (1983)’s Structure Mapping Theory (SMT), more recently a different,
generalization-based approach has been proposed: HDTP (Schmidt et al. (2014)).
Both paradigms, SMT and HDTP, are very similar in that they are symbolic (i.e., op-

erating on domain theories expressed in logic-based languages) and during the mapping
stage heavily rely on syntactical properties of the respective representation languages
and domain formalizations for pairing up domain elements. Still, whilst SMT explic-
itly proclaims that the mapping between domains is established directly from elements
in the source domain to elements in the target domain, and that the subsequent trans-
fer/evaluation step is exclusively guided by groupings of these individual correspondences,
HDTP explicitly computes a generalization of the source and target domain theories into
a least general subsuming theory which later determines the transfer/evaluation phase.1

The process of analogy-making in HDTP can be conceptualized as shown in Fig. 3.1.
HDTP aims at being a mathematically sound framework for the computation of ana-

logical relations and inferences between domains which are given in form of a many-sorted
first order logic representation. Source and target domain are handed over to the system
in terms of finite axiomatizations and HDTP tries to align pairs of formulae from the two
domains by means of restricted higher-order anti-unification as introduced by Krumnack
et al. (2007): Given two terms, one from each domain, HDTP computes an anti-instance
in which distinct subterms have been replaced by variables so that the anti-instance can
be seen as a meaningful generalization of the input terms. As already indicated by the
name, the class of admissible substitution operations is limited. On each expression, only
renamings, fixations, argument insertions, and permutations may be performed. By this

1Here, subsumption has to be understood in the following sense: The joint generalized theory sub-
sumes the original source theory and target theory in that each of the latter can be re-obtained by
applying certain substitution operations to the generalization (see Part II, Chap. A for details). In this
way the joint generalization encompasses both domain theories at a time as more specific variants.
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3. Computational Properties of Analogy-Making Using the HDTP Framework

Generalization (G)

&&xx
Source (S)

analogical

relation
Target (T )

Figure 3.1.: A schematic overview of HDTP’s generalization-based approach to analogy.

process, HDTP tries to find the least general generalization of the input terms, which
(due to the higher-order nature of the anti-unification) is not unique. In order to solve
this problem, current implementations of HDTP rank possible generalizations according
to a complexity measure on the chain of substitutions — the respective values of which
are taken as heuristic costs — and returns the least expensive solution as preferred one.
HDTP extends the notion of generalization from terms to formulae by basically treating
formulae in clause form and terms alike. Finally, as analogies rarely rely exclusively on
one isolated pair of formulae from source and target domain, but usually encompass sets
of formulae (possibly completely covering one or even both input domains), a process
iteratively selecting pairs of formulae for generalization has been included. The selection
of formulae is again based on a heuristic component: Mappings in which substitutions can
be reused get assigned a lower cost than isolated substitutions, leading to a preference
for coherent over incoherent mappings.2

Concerning applications of HDTP, for instance Guhe et al. (2010) apply the framework
in modeling a potential inductive analogy-based process for establishing the fundamental
concepts of arithmetics, Guhe et al. (2011) describe an account of a process blending
different conceptualizations of number into new conceptualizations recognizing common
features and combining distinct ones, and Schwering et al. (2009a) use HDTP for solving
geometric analogies. Further successful and completely worked out application examples,
among others, also can be found as part of this thesis in Chap. 5 on modeling analogy-
related processes from education and learning. Synoptically, these and related studies
illustrate the overall potential of HDTP in terms of expressivity and domain generality,
and establish its suitability for application to also fairly complex analogy-making tasks.
Complementing these efforts and completing the picture, Robere and Besold (2012) and

Besold and Robere (2013) provide an investigation into the computational complexity
and approximability of the approach.3 Viewing HDTP from the perspective of theoretical
computer science as a tool for the computation of generalizations between domain theories
by means of a special form of anti-unification (i.e., putting it under the umbrella of

2For a short overview of further formal aspects of HDTP (and restricted higher-order anti-unification
in particular) see Part II, Chap. A. For details specifically concerning the heuristic aspects of HDTP see,
for instance, Schwering et al. (2009b) and Schmidt et al. (2011).

3See Part IV for full versions of both papers.
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rewriting research), properties, such as computational complexity and approximability,
will not necessarily play a central role in the evaluation of the overall approach and
system. But taking a cognitive HLAI view, the picture changes: Given that the premise
is to ultimately (re)create human-level intelligence with computational means, properties,
such as the amount of resources required for computation, become critical factors.4

Robere and Besold (2012) present a parameterized complexity analysis of HDTP in
its present form using restricted higher-order anti-unification, and also of an earlier ap-
proach based on reducing higher-order anti-unification to first-order anti-unification as
described, for example, by Gust et al. (2006).5 The given analysis focuses exclusively
on the analogical matching of input theories and leaves out the (potentially also re-
quired) re-representation of input theories by deduction in First-Order Logic (FOL).
Although HDTP in its entirety encompasses both parts, from a complexity point of view
re-representation can be identified fairly straightforwardly as undecidable due to the
undecidability of FOL.
By defining three increasingly complex and expressive versions of higher-order anti-

unification — successively admitting additional types of unit substitutions to be included
in the anti-unification process — Robere and Besold (2012) obtain the following results
for analogical matching using restricted higher-order anti-unification:6

1. Anti-unification using only renamings and fixations is solvable in polynomial time.

2. Anti-unification using renamings, fixations and a bounded number of permutations
is NP-complete and W[1]-hard with respect to the minimum number of higher arity
variables and the maximum number of permutations, and becomes fixed-parameter
tractable only with respect to the maximum arity and the maximum number of
subterms of the input terms, together with the maximum number of permutations.

3. Anti-unification using renamings, fixations, a bounded number of permutations,
and argument insertions is NP-complete and W[1]-hard with respect to the mini-
mum number of higher arity variables, the maximum number of permutations and
the maximum number of argument insertions.

Additionally, concerning the earlier version of HDTP based on reducing certain higher-
order to first-order anti-unifications by the introduction of subterms built from so called
admissible sequences, Robere and Besold (2012) show a similar result, establishing NP-
completeness and W[2]-hardness of the analogical matching (the latter with respect to a
key parameter inherent to the admissible sequence-based approach).
Besold and Robere (2013) then complement the parameterized complexity analysis

of HDTP by an assessment of the approximation theoretic complexity of the analogical
4See Chap. 7 for a more detailed discussion of relevant arguments.
5See Part II, Chap. B for a short overview of required basic notions from parameterized complexity

theory.
6In the following, higher arity variables are variables of arity at least 1.
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matching.7 Starting out from the just reproduced results, using a measure of complexity
for any composition of the substitutions allowed in restricted higher-order anti-unification
introduced by Krumnack et al. (2007), and defining the optimization problem as trying
to find a generalization which maximizes the complexity over all generalizations — i.e.,
a generalization which maximizes the “information load” (Krumnack et al. (2007)) over
all chosen generalizations —, it is shown that the problem of analogical matching in the
restricted higher-order anti-unification setting using renamings, fixations, and a bounded
number of permutations does not allow for constant-factor approximation algorithms.
Taking the parameterized and the approximation complexity results together, even

when presuming that a solution for the undecidability problem for re-representation
caused by the choice for full many-sorted FOL as language would be found, the derived
(mostly negative) results concerning the analogical matching cast a shadow over the am-
bition of using HDTP as basis for general computational theories of high-level cognitive
capacities with a certain degree of cognitive plausibility (as, for example, suggested by
relating HDTP to the proposal of their integrated cognitive architecture I-Cog by Kühn-
berger et al. (2007) and Kühnberger et al. (2008), or still hinted at by Martinez et al.
(2012) when proposing to use HDTP as basis for modeling creativity and productivity
issues in artificial systems): Severe scalability problems in terms of needed resources for
computation are to be expected when dealing with anything but small and strongly re-
stricted example scenarios. On the other hand, mostly due to the more refined perspective
parameterized complexity theory offers over classical forms of analysis, the results point
to specific elements of the approach as sources for intractability (such as, for instance,
the use of permutations for restructuring formulae) and the approximation analysis adds
additional weight and precision to the findings (by showing that, even when trying to
solve the analogical matching including the use of permutations only approximately, no
significant change in the state of affairs can be expected).
Also, the discussed negative complexity and approximability properties do not devalue

HDTP’s approach in general, they simply contribute to clarifying its characteristics and
to specifying possible application scenarios — in doing so helping to avoid potentially
time- and resource-intense (mis)developments with little chance of success. And whilst
most likely not being suitable as basis for (parts of) a real-time reactive HLAI system,
HDTP’s perspective on modeling and implementing analogy-making and related cogni-
tive capacities can still fruitfully be applied to create computational accounts useful and
suitable for clarifying the role of analogy-related faculties in conceptual blending (see, for
example, Chap. 4), learning and education (see, for instance, Chap. 5), rationality and
decision-making (see, for example, Chap. 6), and many other domains.

From a conceptual perspective, the overall approach and the types of analyses applied
seamlessly tie into the bigger framework of resource-sensitive modeling and computa-

7See Part II, Chap. C for a short overview of required basic notions from approximation theory.
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tion in HLAI discussed in Chap. 7, providing an application case study and a proof of
feasibility for the theoretical guidelines outlined there.
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4. Theory Blending Using the
Heuristic-Driven Theory Projection
Framework

Boden (2003) identifies three forms of creativity: exploratory, transformational, and com-
binatorial. The label exploratory refers to creativity which arises from a thorough and
persistent search of a well-understood domain (i.e., within an already established concep-
tual space), whilst transformational creativity either involves the removal of constraints
and limitations from the initial domain definition, or the rejection of characteristic as-
sumptions forming part of the specification of the creative problem (or both). Combina-
torial creativity shares traits of both other forms in that it arises from a combinatorial
process joining familiar ideas (in the form of, for instance, concepts, theories, or artworks)
in an unfamiliar way, by this producing novel ideas.
Computationally modeling the latter form of creativity turns out to be surprisingly

complicated: Although the overall idea of combining preexisting ideas into new ones
seems fairly intuitive and straightforward, when looking at it from a more formal per-
spective at the current stage neither can a precise algorithmic characterization be given,
nor are at least the details of a possible computational-level theory describing the pro-
cess(es) at work well understood. Still, in recent years a proposal by Fauconnier and
Turner (1998) called conceptual blending (or conceptual integration) has influenced and
reinvigorated studies trying to unravel the general cognitive principles operating during
creative thought. In their theory, conceptual blending constitutes a subconscious process
which allows for the combination of certain elements (and their relations) from originally
distinct conceptual spaces into a new unified space combining these previously separate
elements and allowing to perform reasoning and inference over the combination.
Unfortunately, Fauconnier and Turner (1998), and also Fauconnier and Turner (2002)

and Fauconnier and Turner (2008), remain mostly silent concerning details needed for a
proper computational modeling of conceptual blending as cognitive capacity — neither
do they provide a fully worked out and formalized theory themselves, nor does their
informal account capture key properties and functionalities as, for example, the retrieval
of input spaces, the selection and transfer of elements from the input into the blend space,
or the further combination of possibly mutually contradictory elements in the blend. In
short: The theory does not specify how the blending process is supposed to work.
These shortcomings notwithstanding, several researchers in AI and computational cog-
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nitive modeling have used the provided conceptual descriptions as starting point for
proposing possible refinements and implementations. Goguen and Harrell (2010) propose
a conceptual blending-based approach to the analysis of the style of multimedia con-
tent in terms of blending principles and also provide an experimental implementation,
Pereira (2007) tries to develop a computationally plausible model of several hypothesized
sub-parts of conceptual blending, Thagard and Stewart (2011) exemplify how creative
thinking could arise from using convolution to combine neural patterns into ones which
are potentially novel and useful, and Veale and O’Donoghue (2000) present their com-
putational model of conceptual integration and propose several extensions to the at the
time actual view on conceptual blending.
It is this tradition of trying to fill in the computational gaps in the original theoretical

accounts of conceptual blending — in order to subsequently attempt to use the resulting
framework for eventually implementing productively creative systems — in which also
the work presented by Martinez et al. (2011) and Martinez et al. (2012) has to be seen.1

The former paper proposes a logic-based framework for blending and metaphor-making
building on HDTP and expanding its analogy-centered account to also encompass theory
blending (as more specific form of conceptual blending), points out how different rele-
vant forms of cross-domain reasoning (i.e., analogy, cross-domain generalization, cross-
domain specialization, and the detection of congruence relations) can be implemented
using HDTP, and prototypically sketches different application case studies of the result-
ing framework, among others, to blending in mathematics or the solving of rationality
puzzles. Martinez et al. (2012) subsequently revisit their former work, provide additional
theoretical considerations on theory blending, engage in more detail with the modeling
of Argand (1813)’s discovery of the complex plane as result of a conceptual blending pro-
cess, and in conclusion provide an outlook on future applications of conceptual blending
in modeling creative capacities in next generation AI systems.
The interpretation of conceptual blending applied by Martinez et al. (2011) and Mar-

tinez et al. (2012) is based on the account given by Goguen (2006): Given two domain
theories I1 and I2 representing two conceptualizations, first compute a generalization
G and then construct the blend space B in such a way as to preserve the correlations
between I1 and I2 given by G (see also Fig. 4.1).
In this view, the morphisms mapping the axioms of one domain theory to another

are induced by signature morphisms over the symbols of the representation languages —
an analogical correspondence is assumed to exist between symbols in I1 and I2 coming
from the same symbol in G. As incompatibilities might pertain between the domains,
the morphisms from I1 and I2 to B are possibly only partial (i.e., not all axioms from
the domain theories are mapped to the blend). In Goguen (2006)’s category theory-based
framework, B is the smallest theory comprising as much as possible from I1 and I2 while
reflecting the commonalities of I1 and I2 encoded in the generalization G.

1See Part IV for full versions of both papers.
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Figure 4.1.: A conceptual overview of Goguen (2006)’s account of conceptual blending.

This approach clearly offers itself to a (re)conceptualization and (re)implementation
using HDTP: Whilst intra-domain reasoning can be performed with classical logic cal-
culi over the many-sorted FOL language, the computation of a generalization G from
two input domains I1 and I2 (involving cross-domain generalization, cross-domain spe-
cialization, and possibly the detection of congruence relations as used, for instance, by
Guhe et al. (2011)) is one of HDTP’s core functionalities. Thus, basically the entire lower
half of Fig. 4.1 is naturally covered by the standard mechanisms of HDTP (also compare
Fig. 4.1 with Fig. 3.1).2 The only additional element needed is a mechanism for using the
information provided by the domain theories I1 and I2 together with the generalization
G for computing the blend B.
Martinez et al. (2011) and Martinez et al. (2012) use this conceptual framework for

reconstructing a famous occurrence of conceptual blending in the history of mathemat-
ics: The discovery of the geometrical interpretation of the complex numbers as complex
plane by Argand (1813). As reproduced in Stedall (2008), Argand used a succession of
consecutive blending steps (partially involving preexisting domain theories, partially us-
ing the results from earlier blending steps in the continuation of the process) for deriving
his theory. The resulting network of theories can be conceptualized as shown in Fig. 4.2.
In the same vein, Martinez et al. (2011) (and in less detail also Martinez et al. (2012))

offer an explanation of Tversky and Kahneman (1983)’s famous Linda problem which
seems to be an instance of the so-called conjunction fallacy: Subjects are told a story
about a bank teller named Linda and are subsequently asked to order different statements
about Linda according to their perceived probability given the previously acquired infor-
mation from the story. Quite reliably, subjects tend to consider a statement combining
two properties into one as more likely as the individual property statements, by this
contradicting the basic laws of probability theory in that the joint probability of two
events has to be less or at most equal to the probability of each individual event. But
instead of following Tversky and Kahneman (1983) in their attempt at an explanation
of this phenomenon relying on the introduction of the notion of representativeness as

2For the purpose of conceptual blending, the distinction between a source domain and a target
domain as in the case of computational analogy-making becomes obsolete.
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Figure 4.2.: The network of domains involved in Argand (1813)’s article as reconstructed
by Martinez et al. (2011) and Martinez et al. (2012): Argand’s addition to the
— in his time already preexisting — network of interconnected mathematical
concepts and theories are the nodes vectors for the vector domain and
Complex Plane (CP), which together with Complex Arithmetic (CA)
and the number line NL form the shape of a blending diagram (also see
Fig. 4.1). In the diagram, arrows indicate the direction of (partial) theory
morphisms, labels indicate constraints at the level of models, and curved
tails replace “injective” labels on the arrows..
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driving force behind this deviation from (probabilistic) rationality, Martinez et al. (2011)
provide formalizations of relevant parts of the story about Linda and of the properties
involved in the alleged violation of rational behavior and use these to subsequently out-
line how the HDTP-based approach to conceptual blending in combination with some of
the principles and dynamics internal to HDTP can provide an account (re)rationalizing
the subjects’ answering behavior.3

In summary, these and related studies, such as, for example, the work reported by Abdel-
Fattah et al. (2012), Abdel-Fattah and Krumnack (2013) and Abdel-Fattah et al. (2013),
give proof of the feasibility of an analogy-based approach to conceptual blending and
the applicability of HDTP as modeling tool to occurrences of conceptual blending in
diverse contexts, ranging from the described reconstruction of mathematical discoveries
and explanations for rationality puzzles, through the assignment of meaning to previously
unknown compound nouns, to the interpretation of counterfactual statements.

3Also see Chap. 6 for a proposal of why the obvious violation of basic laws of probability theory
by the subjects does not necessarily have to constitute an instance of irrational behavior or qualify the
subjects as irrational in general.
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5. Computational Analogy-Making in
Education

As already stated in Chap. 2, analogy and related faculties (as, for instance, conceptual
blending) are pervasive in our daily life and form part of many important high-level
human cognitive functions and abilities. One of the most crucial among the latter is
the human capacity to learn, i.e., to acquire new knowledge and to develop previously
unmastered capabilities based on either unsupervised and uninstructed observation and
experimentation or through guided and targeted educational processes: Gentner et al.
(2001) proposed analogy as an essential part of the human ability to learn abstract
concepts, and Ross (1987) showed its role in learning new procedures. Also, according to
Novick (1988), analogy seems to play a crucial role in relation to the ability to transfer
representations across contexts or to adapt to novel contexts (see, for example, Holyoak
and Thagard (1995)), and Goswami (2001) found a strong influence of analogy within
children’s cognitive repertoire for learning about the world.
Of course, based on these psychological findings, analogy also started to receive at-

tention in education and the learning sciences: Duit (1991) provides evidence for the
role of analogy in facilitating learners’ construction process of new ideas and conceptions
on the grounds of already available concepts, and Arnold and Millar (1996) show that
analogies can foster understanding of scientific explanations. On the other hand, anal-
ogy is not a cure-all as unsuccessful analogies may produce misunderstandings and can
possibly result in harmful misconceptions (see, for example, the work by Clement (1993)
and Zook and Maier (1994)). All these findings notwithstanding, following among others
Akgul (2006), the current level of knowledge about analogy as an instructional device in
everyday practice has to be considered quite low.
In a series of papers building upon each other, Besold (2013a), Besold et al. (2013),

Besold and Kühnberger (2014) and Besold (2014b) model and analyze with computa-
tional means the use of analogy-based methods in physics and mathematics teaching
scenarios taken from a primary school classroom setting, providing evidence for the gen-
eral suitability of computational analogy engines for usage in studying methods and tools
applied in teaching and education.1 These efforts form part of a bigger program aiming
to introduce computational approaches and models of analogy also to education and the
learning sciences, by this on the one hand enriching the methodological repertoire avail-
able to these fields of study and on the other hand opening up new domains to AI and

1See Part IV for full versions of the referenced papers.
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cognitive systems research.
Besold (2013a) proposes three (partially overlapping) possible scenarios of use for com-

putational analogy systems in education and teaching-related topics:

• Modeling and analysis: Symbol-based analogy engines can be used for explicitly
modeling and understanding the conceptual mode of operation of analogies in a
teaching context, addressing a level of detail situated between the level of com-
putational theory and the level of representation and algorithm in Marr (1982)’s
Tri-Level hierarchy.

• Exploration and testing: Frameworks allowing for an incorporation of parame-
ters from experimental and classroom data, mirroring children’s cognitive capacities
and limitations in situation-adequate ways, into the mechanisms of the analogy en-
gine may be used for exploring, developing and testing given analogies for a teaching
context. Also, in a way simulating children’s analogy generation and understanding
in a specific situation, the system could be used for discovering the analogies which
the children might find between two domains a teacher wants to use in a selected
educational context.

• Discovery and guidance: Given two domains by the teacher, the analogy engine
can be used for discovering what analogies generally could arise between these
domains and how the analogy-making process might have to be guided (e.g., what
additional framing facts have to be included in the initial domain theories) to
obtain one specific, previously planned analogy (or set of analogies) as result of the
process.

As proof of concept for the proposed approach, Besold (2013a) provides a reconstruc-
tion of the string circuit analogy for electric current in form of an HDTP-based model.
This particular analogy is used in science classes for 8 to 9 year old children and aims at
facilitating the understanding of the basic principles of electric current: Participants are
placed in a circle and asked to loosely support a string loop which one person (normally
the teacher) subsequently makes circulate. Using prior knowledge about electric circuits,
obtained when playing with simple circuits, students then are asked to conjecture how
the person moving the string relates to the battery in an electric circuit, how the string
loop relates to the electric current, etc. The HDTP model reproduces findings concerning
the alignment of domain elements from a study by Guerra-Ramos (2011) and addition-
ally clarifies the involved conceptual transfers and necessary elements of prior knowledge
in each domain.
Besold et al. (2013) then provide a second, more complex example for the reconstruc-

tion of an analogy-based teaching method. There, Schwank et al. (2005)’s Calculation
Circular Staircase, a teaching tool for basic arithmetics and the interpretation of the nat-
ural numbers as ordinal numbers used with children in primary school, is modeled using
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HDTP. The staircase allows children to playfully develop an understanding of addition
and subtraction within the basic number space of the naturals through repeated con-
structive transformation processes which are grounded in motor-based interaction with
the tool. In this case, the HDTP model sheds light on how the interaction between the
structure and the built-in principles of the Calculation Circular Staircase on the one
hand, and the memorized declarative counting procedures learned in school on the other
hand can bring forth the targeted conception of the space of the natural numbers together
with the basic arithmetic processes operating on it.
Another mathematics teaching tool — in several ways similar to the Calculation Cir-

cular Staircase — is Schnalle and Schwank (2006)’s Number Highrise. Besold and Kühn-
berger (2014) use HDTP to construct a model of this mathematical toy world designed for
exploring the natural number space up to 100 and for discovering multiplication-based
relations within this space. Analogous to the Calculation Circular Staircase, children
through (partially guided, partially unsupervised) playful interaction with the teaching
device discover numerical relationships within the range of 1 to 100, such as, for instance,
the concept of the least common multiple and the greatest common factor, or the notion
of prime numbers. The provided computational model again explicates the underlying
structural relations and governing laws and offers an account of how the construction-
based experiences and insights from play, in combination with previously memorized facts
about natural numbers and times tables, can give rise to the discovery and understanding
of more complex notions.
Besold (2014b) concludes the cycle of papers by summarizing the initial conceptual

ideas of Besold (2013a), together with accounts of the HDTP models of the string circuit
analogy, the Calculation Circular Staircase, and the Number Highrise, and embedding
the entire program into the framework of research on the role of sensorimotor experiences
in learning and teaching on the one hand, and the computational study of creativity and
cognitive capacities, such as learning and concept formation, on the other hand.

In general, the examples presented in the different studies provide evidence for the feasi-
bility and usefulness of applying computational methods and, more precisely, computa-
tional analogy engines to research questions in education and the learning sciences. But
this clearly is not a one-way transfer: The insights resulting from this type of work are
not only useful for researchers on the psychological or pedagogical side of the interaction,
but they can also be useful for understanding how to model and (re)create cognitive ca-
pacities in AI systems. By modeling children’s analogy-based learning and development
processes, general insights about the mechanisms at work can be gained which then can
again fruitfully be applied in the construction of new and the improvement of already
existing computational frameworks and paradigms.
With respect to related studies, although the discussed application of computational

analogy frameworks to the modeling and analysis of analogy-based teaching tools and
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techniques is currently not pursued in a systematic way outside the presented project,
this line of work continues efforts conducted, for instance, by Thagard et al. (1989) and
by Siegler (1989): Whilst the former present a theory and implementation of analogical
mapping in the context of explanations of unfamiliar phenomena, such as, for exam-
ple, used by chemistry teachers, the latter conjectures how Falkenhainer et al. (1989)’s
Structure-Mapping Engine could be put to use in gaining insights about developmental
aspects of analogy use.
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6. Rationality, Analogy, and
Human-Level Artificial Intelligence

One of the qualities allegedly setting apart humans from their fellow animals is the former
ascribed capacity to think rationally and act accordingly. Already Aristotle characterized
humans as rational animals (“zoon logikon”) in his Metaphysics (see, for example, Tre-
dennick (1933)) and as being imbued by a rational principle in his Nicomachean Ethics
(see, for instance, Broadie and Rowe (2002)). These and similar considerations by other
philosophers and scholars over the centuries fueled a continuous stream of investigations
into the nature and properties of (human) rationality. Over the course of these investiga-
tions, rationality got partially uncoupled from its human hosts, transforming the notion
from a mainly descriptive account of a reasoner’s behavior (with the reasoner being as-
sumed to be mostly rational due to her nature as rational animal) to a normative and
prescriptive theory of how humans should reason in theory and practice.
It should therefore not come by surprise that currently no unanimously accepted

definition of rationality exists, but that there are several competing frameworks for
modeling rationality (and establishing a normative theory). Following Besold (2013d),
a non-exhaustive list of types of models has to contain at least four main categories:
Logic-based models (see, for example, Evans (2002)), probability-based models (see, for
instance, Griffiths et al. (2008)), game-theoretically based models (see, for example, Os-
borne and Rubinstein (1994)), and heuristic-based models (see, for instance, Gigerenzer
et al. (2011)). The respective definitions of rationality (and the corresponding frame-
works) are in many cases almost orthogonal to each other, when taken together making
them at best incommensurable, if not inconsistent or even partly contradictory. Also, in
many cases the predictive power turns out to be limited as the focus lies on the normative
or postdictive-explanatory aspects of the respective models.
But independently of whether rationality is taken as descriptive, normative/prescriptive

or, possibly, predictive characterization of a reasoner’s mental processes and behavior, of
course AI research and (even more) specifically work in HLAI from the very beginning
has been interested in modeling rationality and rational behavior with computational
means: If an artificial system were to be considered intelligent and human-like in its ca-
pabilities and actions, deviations from rationality and rational behavior in cases where
humans seem to adhere to these standards would be judged as major setbacks. Also, if
an artificial system were to interact closely with humans, a feasible notion of rational-
ity would most likely be required within the system to allow for predictions of human
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behavior by the AI and vice versa.
The first section of this chapter, based on Besold (2013d), accordingly shortly discusses

the history and status quo of rationality as topic of study within AI and HLAI and then
continues to advocate dedicated research on (artificial) rationality, aiming at developing
accounts of rationality suitable for the specific needs and purposes of (HL)AI. The second
section, following Besold and Kühnberger (2012), subsequently introduces a subject-
centered notion of rationality as alternative proposal to existing mainstream theories
of rationality and, summarizing work presented in Besold (2013c), sketches how such a
notion could be conceptualized and implemented using models of analogy and HDTP as
computational analogy engine.1

6.1. Rationality and Artificial Intelligence

As also pointed out, for instance, by Russell (1997), the concept of rational agency has
for a long time been considered a promising candidate when trying to define the notion
of intelligence AI is striving for. And although there are several different notions of how
rationality could precisely be interpreted or instantiated, for the purpose of providing
a short sketch of the role(s) rationality played and could play in AI research, Besold
(2013d) uses a quite general conception only demanding for an action/behavior to adhere
to the “principle of rationality” to be considered as rational: Solutions to a task have to
constitute the least effortful, direct course of action to attain as much of a goal as it is
possible given current environmental and other constraints.2

As already advocated previously, AI and, even more, HLAI research should be inter-
ested in rationality for at least two reasons: On the one hand, when aiming for human-
like intelligence in an artificial system, modeling rationality on a human level has to be
considered a milestone towards the overall goal. On the other hand, having a feasible un-
derstanding and account of rationality in an AI system can play a key role in interaction
with humans, making the interaction between natural and artificial agents more natural
and seamless. As, for example, Doyle (1992) points out, there is reason to believe that
a theory of rationality might in general at some point equal mathematical logic in its
importance for mechanizing reasoning.
Still, when having a closer look at the status quo of rationality research within AI

and HLAI, it has to be noted that the employed notions of rationality have stayed fairly
close to their fields of origin and have mostly been taken over without proper adaption to
the chances and limitations introduced by the computational AI/HLAI context: In order
to just mention a few shortcomings, neither has the explicit access to computational
properties of processes widely been taken into account, nor have more prominent attempts

1See Part IV for full versions of the referenced papers.
2This understanding of rationality also covers, among others, the different forms of rationality con-

sidered by Russell (1997).
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been undertaken to exploit synergies with previous theoretical or applied work as, for
example, to be found in theoretical computer science or cognitive modeling and cognitive
systems research.
This state of affairs has to be considered even more surprising when having a look at

the advantages of a targeted and specifically AI-rooted approach to rationality research
would offer: A more holistic perspective on rationality within artificial systems could be
achieved, combining existing theories and tools from all over AI, computational factors
(such as, for instance, computational complexity) could explicitly be addressed and widely
be taken into account, and the nature of AI as partially engineering-based endeavor
(resulting in the creation of new and stepwise improvement of existing runnable systems)
would allow for empirical testing and development of theories in a cycle of theory-practice-
coevolution. Finally, it has to be noted that such an approach in all likelihood would not
only profit AI and HLAI as a field of study, but could also have beneficial reflections
back on more classical fields of rationality research, such as, psychology, economics, and
philosophy, as the latter could be provided with testbeds for their models and theories,
whilst also getting inspiration from approaches and perspectives previously limited to
within AI.

6.2. An analogy-based approach to rationality in
Human-Level Artificial Intelligence

Besold (2013d) also provides a first sketch of a concept further theoretically developed by
Besold and Kühnberger (2012) and considered in an implementation context by Besold
(2013c): A notion of “subject-centered rationality” with a strong emphasis on incor-
porating reasoner-specific constraints and possibilities and a focus on the positive and
predictive aspects of the resulting models, sharing important elements, for example, with
Simon (1956)’s “bounded rationality” or with the subjective concept of rationality by
Gilboa and Schmeidler (2001).
The advocated position takes its roots in the interpretation of rationality as a gen-

uinely human faculty (following the already mentioned understanding of man as rational
animal) and, thus, as a notion empirically defined by human reasoners — which in turn
implies that the use of models and norms which can never be implemented or met by
humans, due to limitations in their cognitive capacities or due to mismatches on a con-
ceptual or motivational level, is only of limited interest.3 Also, this stance does not give
priority to any particular formal approach or modeling paradigm, but rather sees par-
ticular techniques and formalisms as means to an end with particular advantages and

3Clearly, this reading of rationality stands in fundamental conceptual disagreement with notions of
AI and HLAI systems as “perfect reasoners” on a super-human level as envisioned, for instance, by Hutter
(2005)’s AIXI model.
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shortcomings, probably making necessary the incorporation of several different perspec-
tives into an integrated or hybrid resulting framework.
As expanded upon in Besold and Kühnberger (2012), such a human-inspired notion of

rationality can be founded on three conceptual cornerstones:

• Subject centricity: Rationality in a human context has to be considered as a
subject-centered notion, demanding for the integration of subject-related properties
and constraints.

• Positive nature of the theory: The main aspect of theories and models of
rationality has to be their use and applicability as positive theories, and not as
mere normative or postdictive-explanatory accounts.

• Holistic nature of the approach: A feasible theory of rationality does not have
to be committed to one single formal modeling paradigm, but instead of being
monolithic should pursue a holistic approach.

Taking all this together, this view opens the door for rationality to be seen (potentially)
as a plethora of mechanisms competing, interacting and contributing to what can ex-
ternally be observed as one single capacity which is strongly agent-specific in its precise
form and manifestation. Still, the notion does not become trivialized as, due to the pre-
sumably considerable overlap in cognitive capacities and functions shared by all human
reasoners, it can be expected that the basic characteristics should qualitatively be the
same between individual subjects — which in turn should allow for the development of
a general artificial model sharing these properties.
Besold (2013c) then grounds this notion in a strong relation to the context in which an

agent faces a decision or choice situation and the (human) subject’s ability to perform
analogical reasoning. This contextualized analogy version of subject-centered rationality
shares several basic properties with Rieskamp and Reimer (2007)’s notion of “ecological
rationality”, but is independent from the latter in its strong emphasis on the reasoner’s
abilities and their impact on the reasoning process rather than on the (almost automatic)
guidance of the mental mechanisms by the environment.
Also, Besold (2013c) outlines how the HDTP computational analogy engine could

be used as basis for a general architecture solving well-known rationality puzzles and,
thus, for developing runnable models of the proposed notion of rationality: By going
through a retrieval phase, in which analogical situations for a problem description and
domain are retrieved, a mapping stage establishing correspondences between elements of
the problem and the retrieved candidate situation(s), a transfer step in which solution-
relevant knowledge is moved (and accordingly adapted) from the candidate situation(s)
to the problem domain, and a final application phase in which the injected knowledge is
then used for solving the problem in the corresponding domain. On a conceptual level,
HDTP offers itself for an expansion in this direction as several of the internal processes
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and heuristics can directly be reused for guiding the just described process.

In summary, the work discussed in this section and the previous one contributes to
understanding and developing HLAI and the role of analogy in HLAI systems in several
ways: On the one hand, the introduced notion of subject-centered rationality allows
for a more adequate understanding of and approach to rationality in the context of
HLAI research and system engineering, possibly overcoming some of the hinderances and
pitfalls which had been introduced by a strong fixation on particular formalisms and
perfect, reasoner-independent rationality in the past. On the other hand, the importance
for human-level intelligence of cognitive mechanisms, such as, for instance, analogy, and
the resulting advantages of a cognitively-inspired perspective on HLAI have been further
emphasized, and an architectural sketch for how HDTP as existing computational analogy
framework could also be employed in the context of rationality has been given.
With respect to related efforts by other researchers, although the particular perspective

on rationality and the approach to implementing it building on HDTP discussed above
are new, an example for a related project on the computational side can be found in
Petkov and Kokinov (2006)’s work on analogy-making, judgement and choice, or on the
psychological side in the studies by Markman and Moreau (2001) on the role of analogy
and analogy-based comparison in choice setups. Concerning the conceptual notion of
subject-centered rationality, as already pointed out at the beginning of this section,
some central elements are shared with the proposals by Simon (1956) and by Gilboa and
Schmeidler (2001). Also, a substantial part of the underlying intuitions and ideas overlaps
with the driving insights behind Cherniak (1986)’s proposal of “minimal rationality”.
Although the two accounts have been developed completely independently, the emphasis
on the impact and ramifications of the boundedness of human cognition and reasoning
as characteristic features of a meaningful account of rationality is common to both. Still,
there are fundamental differences in the consequences drawn: Whilst Cherniak (1986)
stays strongly rooted in the logical tradition of rationality, the proposal put forward by
Besold (2013d), Besold and Kühnberger (2012), and Besold (2013c) does not commit to
one particular formalism but argues in favor of an integrative pluralistic approach.
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7. Complexity and Approximability as
Guiding Forces in Human-Level
Artificial Intelligence

Consideration of the computational properties, such as, for instance, the computational
complexity, of a theory and corresponding models already played a central role in the
notion of subject-centered rationality introduced in the previous chapter. Besold and
Robere (2014) more generally advocate the use of similar formal methods, including
complexity theory and approximation theory, as overall guidelines in the development
of HLAI models and systems, with Besold (2014c) additionally pointing out the need
for the development of a theory of structure-based approximation as necessary tool.1

The suggestion is exemplified using the example of the parameterized complexity and
approximability analysis of HDTP discussed in Chap. 3 and by a theoretical proposal for
how to ground the notion of heuristics in cognitive systems and HLAI on solid formal
foundations.
The fields of AI, HLAI, and cognitive systems research are characterized by a multi-

tude of competing paradigms and approaches on all levels, from the high-level modeling
of entire systems versus individual capacities, through the connectionist versus symbolist
debate, down to questions of which particular logical language or which precise attractor
model is superior over some other. Whilst this variety on the one hand should be seen as
an advantage, as this far it is not clear which perspective or take on solving the (artificial)
intelligence puzzle will succeed, on the other hand this often leads to parallel develop-
ments, incommensurable results and models, and a general lack of unifying principles
and interfaces between the different streams.
Based on the recognition of this heterogeneity, Besold and Robere (2014) take inspira-

tion from recent developments in theoretical cognitive science as basis of an attempt at
establishing widely formalism- and design-independent standards and guiding forces for
cognitive systems and HLAI research: As van Rooij (2008) points out, computational-level
models of human cognitive capacities are most likely constrained by the computational
complexity of the resulting theory — following the proposal given there, they have to
be fixed-parameter tractable for parameters which can be assumed to be always small in
practice. This has to be considered reasonable when entertaining a computational theory
of mind as, among others, advocated by Pylyshyn (1980) and additionally accepting the

1See Part IV for a full version of Besold (2014c) and the final preprint of Besold and Robere (2014).
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Church-Turing thesis (see, for instance, Turing (1969)), equating effective calculability
with Turing computability: Against this background it seems highly unlikely that the
mind could run some form of intractable theory in what we perceive as realtime.
Starting out from these and similar considerations, also additionally considering the

so called “P-Cognition thesis” made known to an AI audience by Cooper (1990), Nebel
(1996), and others, taking into account tractability and limitations on the admissible
computational complexity of theories and models also in an HLAI and cognitive systems
context seems recommendable. Following the example set by van Rooij (2008), Besold
and Robere (2014) therefore introduce a “Tractable AGI thesis” which demands also
for models of cognitive capacities in artificial intelligence and computational cognitive
systems to be in FPT for parameters which can reasonably be assumed to be small in
real-world scenarios.
The advantage of this form of high-level characterization of limiting factors for models

and theories lies in its generality and independence from particular implementation de-
tails, by this overcoming many of the aforementioned divisions and barriers within HLAI
and cognitive systems research and allowing for the introduction of general principles
and requirements. The work by Robere and Besold (2012) and Besold and Robere (2013)
moreover serves as a first worked out example of how a corresponding system analysis
can look like and what kinds of results can, among others, be expected.
Continuing on a more theoretical level, Besold and Robere (2014) also provide a second

example for how complexity theory and, additionally, approximation theory can be use-
ful in establishing boundaries and guiding principles for work on computational models
of cognition and intelligence. Building on the currently very popular practice of trying
to use heuristics for solving complex problems in limited time, a formal characteriza-
tion of the two main types of heuristics to be found in cognitive and HLAI systems is
proposed: Reduction-based heuristics, trying to reduce a complex problem to a simpler,
but solution-equivalent instance thereof, and approximation-based heuristics, trying to
provide approximate solutions to the original problem. The former kind of heuristic is
identified with the parameterized complexity concepts of kernelization and kernelizabil-
ity, the latter is suggested to be taken as coinciding with the approximation-theoretical
idea of constant-factor approximation algorithms APX.2

The kernelizability of a problem — which coincides with the problem’s membership
in FPT as discussed, for example, by Downey et al. (1997) — implies that there is a
certain type of reduction of a problem instance to a commonly smaller or less-complex
one (namely to an instance bounded in its size by the value of a certain computable
function applied to the parameter of the original instance) within the same problem class
which can then be solved instead of the original one. On the other hand, if a problem is
not kernelizable no “downward reduction” of this kind exists. Setting this in relation to

2See Part II, Chap. B for a short overview of required basic notions from parameterized complexity
theory and Chap. C for their counterparts from approximation theory.
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the notion of reduction-based heuristics, in interpretation it can be said that this form of
heuristic can only feasibly be applied to kernelizable problems as otherwise the existence
of the hypothesized reduction cannot be guaranteed — which introduces a constraint on
the class of problems that can be addressed with reduction-based heuristics in the first
place, consequently equating this class with FPT.
Using polynomial-time APX approximability as standard for approximation-based heu-

ristics, i.e., demanding for a problem to be approximable in polynomial time up to a cer-
tain constant factor of the optimal solution, can be motivated in a similar way: Only if
it is possible to provide a factor for which the problem is polynomial-time approximable,
and if this factor can be considered as meaningful in the overall context, it seems reason-
able to assume that an approximation-based heuristic is in general suitable for solving
the problem class.3 Again, this delimits the class of problems which can reasonably be
tackled with approximation-based heuristics from those for which this is not the case,
this time using APX membership as separating criterion.
In a third step, taking an integrative perspective on heuristics by using the concept

of fixed-parameter approximability FPA, both just discussed notions can be subsumed
under what Besold and Robere (2014) call the “Fixed-Parameter Approximable AGI the-
sis”. The latter, in the style of the earlier Tractable AGI thesis, demands for models of
cognitive capacities in cognitive systems research and AI to be fixed-parameter approx-
imable for input parameters that can reasonably be assumed to be small in practice —
with the difference to the Tractable AGI thesis being that the FPA version also accom-
modates for approximation approaches. Conveniently, both notions previously used for
characterizing the two distinct general types of heuristics, FPT and APX, in most cases
imply membership in FPA.4,5

Whilst all the summarized proposals make use of “classical” complexity and approxi-
mation theory, Besold (2014c) additionally points out the need for another tool on the
approximation side: Standard approaches to approximation are value-based in that they
measure the degree of optimality of a solution provided by the approximation algorithm
in terms of proximity of the value to the actual optimum for the optimization problem
under consideration. Unfortunately, value similarity does not necessarily coincide with
structure similarity — a proposed close-to-optimal solution in terms of value can be ar-
bitrarily far from the real optimum in terms of structure. Whilst for many domains the
value dimension is almost exclusively relevant, for cognitive systems and HLAI appli-

3Of course, also alternative classes to APX, such as PTAS, the class of problems for which there
exists a polynomial-time approximation scheme, could be considered. Still, using APX seems to be the
best choice in terms of balance between rigidity and flexibility of the notion, as well as in terms of its
conceptual relation and theoretical and empirical fit to Simon (1956)’s notion of satisficing in human
reasoning.

4For the FPT case, a slightly more specific form of FPT-membership, namely fixed-parameter
tractability with witness as introduced in Cai and Chen (1997), is required.

5FPA also contains problems which are neither in FPT nor in APX, i.e., FPA is more general than
the set-theoretical union between FPT and APX.
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cations, such as, for instance, computational analogy-making as performed by HDTP,
the structure of approximate solutions can play a crucial role. Unfortunately, although
the need for such a tool has already been recognized, among others, by Hamilton et al.
(2007), currently there is no theory or formal framework for performing structure-based
approximation analysis, leaving a significant methodological gap that will have to be
filled in the near future.

From a more general perspective, Besold and Robere (2014) continue the tradition started
by work on the aforementioned P-Cognition thesis in AI in the late 1980s and early 1990s,
additionally incorporating results of more recent developments in theoretical computer
science, such as the tools and techniques offered by parameterized complexity theory
and approximation theory. Concerning related work, whilst within (HL)AI and cognitive
systems research currently only limited efforts are dedicated to further developing the
formal basis and analytical methodological repertoire — with, for instance, Wareham
et al. (2011)’s contribution on complexity issues in adaptive reactive architectures being
a laudable exception —, theoretical cognitive science at the moment witnesses a grow-
ing number of contributions providing in-depth analysis of chances and limitations of
computational-level approaches to modeling cognitive capacities. Examples for the latter
line of research are, among others, Kwisthout et al. (2011) and Kwisthout and van Rooij
(2012)’s results on approximate bayesian inference or Blokpoel et al. (2011)’s insights on
the computational properties of certain communicative aspects. Concerning the question
for structure-based approximation techniques introduced into the HLAI and cognitive
systems debate by Besold (2014c), although in related fields of research already asked in
the past, no solution seems to be in sight.
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8. The Scientific Status of Human-Level
Artificial Intelligence and the
Testability Question

Having had a look at HLAI and the role cognitive capacities and computational models
thereof can play in this line of research over the previous chapters, and before providing
an overall concluding discussion in the next one, the focus now is shifted away from
the question of how to implement and (re)create human-level intelligence in an artificial
system, towards the question of what the scientific status of such an endeavor (and AI
more generally) is and how its progress or success can be measured (if at all): Besold
(2013b) addresses the general question for the scientific status of AI and HLAI research,
Besold (2014a) provides a critical review of the chances and limitations of Bringsjord
and Schimanski (2003)’s Psychometric AI proposal as quantitative evaluation standard
for work in HLAI, and Besold (2013e) gives an alternate proposal in form of a revamped
and refined version of Turing (1950)’s famous interactive testing paradigm.1

8.1. Human-Level Artificial Intelligence as a science

As pointed out by Besold (2013b), from a certain perspective AI, and even more HLAI,
seems to stand out between the modern sciences for more than one reason: Neither is
there an agreement upon what shall be AI’s overall objective, nor is there a commonly
accepted methodology for conducting research in AI and HLAI, nor is there consensus
concerning the valuation of previous developments and of the actual status quo in AI as
a story of success or perpetual failure.
These and related observations repeatedly caused philosophers of science and even

some researchers from within AI to wonder about AI being a special type of science, or
to even question (and occasionally finally deny) the status of AI and HLAI as a science.
Recently, Cassimatis (2012) advocated that, when dealing with HLAI research, normal
scientific standards and methods are often incidental and even antithetical to achieving
human-level intelligence in an artificial system, and that a different approach would thus
be required.
Cassimatis’ line of arguments for why HLAI is not a normal science starts out with

1See Part IV for full versions of the referenced papers.
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proclaiming a significant qualitative difference in the specificity and the level of ambition
of the respective goals between research in HLAI and other sciences. From his point of
view, the objectives of HLAI are “more concrete and much more ambitious” than the
counterparts from other fields. Also, he claims that (HL)AI historically had not been
conducted as a normal science as systems allegedly never witnessed experimental evalu-
ation or formal proofs, which would be obligatory part of science or engineering research
reports. Whilst the evaluation of the first claim seems to be a question of personal judge-
ment only, the latter claim should at least be considered debatable: For instance, consider
Winograd (1971)’s very early comparison of his SHRDLU system with other parsers and
programs, or the numerous introspection reports that Newell and Simon collected and
methodologically analyzed as basis for the development of their General Problem Solver
Newell and Simon (1959). In doing so Newell and Simon implemented systematic observa-
tion, data collection, analysis and subsequent model building as classical methodological
pattern from the natural sciences — and thus in their doing already back in the 1970s
were compatible with the following, much more recent observation stated in Russell and
Norvig (2009):

“In terms of methodology, AI has finally come firmly under the scientific
method.”

But the line of reasoning given by Cassimatis does not stop with claiming that HLAI
is not a science in the normal sense, but continues with a much stronger and (if correct)
even more troublesome observation. In his eyes, the application of scientific norms and
methodological standards is detrimental to progress towards the goal of achieving HLAI.
Two of Cassimatis’ main quarrels consequently lie with formal or empirical demonstra-
tions of correctness or optimality, and the connected computational requirements in terms
of processing power and speed. From his perspective, the belief that importance should
be assigned to showing the formal correctness of a theorem, or to empirically demonstrat-
ing a method’s optimality with respect to a certain normative standard, goes against the
nature of human intelligence. By reference to Simon (1956)’s notion of bounded rational-
ity, Cassimatis tries to demonstrate that human rationality and reasoning fall far from
optimality or formal correctness in all but a few cases, and that, thus, also HLAI should
not use normative notions of correctness or optimality in judging and evaluating results.
As already pointed out in Chap. 6, it goes without doubt that human rationality is not

optimal in any of the classical senses and is indeed subject to limitations arising from
computational complexity or intractability. But this does not mean that no quantitative
assessment is possible or meaningful per se: Whilst on the one hand a proposal for
re-conceptualizing rationality in a more adequate way can be found in Chap. 6, and
work towards a formal framework allowing to evaluate computational limitations and
properties of HLAI frameworks is summarized in Chap. 7, on the other hand there is
at least one approach within AI itself which claims to successfully apply quantitative
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measures to problems in HLAI research, i.e. research going by the name of Psychometric
Artificial Intelligence (PAI).

8.2. What Psychometric AI can (not) do

Bringsjord and Schimanski (2003)’s PAI aims to apply the full battery of techniques from
psychometrics to an HLAI context, setting its internal standard by declaring an agent as
intelligent if and only if it does well in all established, validated tests of intelligence. This
makes PAI a very quantitatively focused field of research with clear normative principles,
but still seems to avoid the pitfalls Cassimatis (2012) meant to diagnose. As advocated by
the proponents of PAI as methodology, the progress of an HLAI system towards achieving
the overall goal of (re-)creating human intelligence is measured against actual human
performance on what seems to be a commonly agreed upon standard means of assessing
the relevant human mental capacities. By doing so, it is suggested that optimality is not
demanded anymore with respect to a hypothetical idealized standard but with respect to
achievable and reproducible testing scores of human subjects. Still, as shown by Besold
(2014a), PAI falls short of its own overall expectations.
As introduced by Bringsjord and Schimanski (2003), the PAI approach can basically

be divided into two streams with corresponding definitions of necessary and sufficient
criteria for an artificial agent to be considered intelligent:

• Naive Psychometric AI: “Some agent is intelligent if and only if it excels at all
established, validated tests of intelligence.”

• General Psychometric AI: “Psychometric AI is the field devoted to building
information-processing entities capable of at least solid performance on all estab-
lished, validated tests of intelligence and mental ability, a class of tests that includes
not just the rather restrictive IQ tests, but also tests of artistic and literary creativ-
ity, mechanical ability, and so on.”

Whilst the shortcomings of the naive PAI proposal, such as a resulting overly narrow
characterization of the full range of human cognitive capacities due to limitations of what
is and can be evaluated by the named tests, become obvious quite quickly, the general
PAI approach at first seems more promising. It seems to offer sufficient coverage in terms
of addressed mental faculties as to assure that the passing HLAI would really match
human-level standards, the standardized nature of the tests would allow the outcomes
of different runs to be easily comparable, and the quantitative nature assessed on a
continuous scale allows to not only measure success or failure but to also provide an
indication of whether (and how quickly) the system is advancing towards meeting the
test criteria or not.
Still, also general PAI is built on a possibly fatal misunderstanding: Namely Bringsjord

and Schimanski (2003)’s misreading of psychometrics being the field which systematically
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measures, among others, intelligence in a direct manner. To the contrary, psychometric
measures of intelligence are correlational measures testing the performance of traits com-
monly associated with what is interpreted as intelligence. In consequence, also general
PAI does not train its systems on human-level intelligence but on correlated capacities
without clear evidence that the resulting measure turns out to actually address intelli-
gence in a reliable way. Similar to a patient suffering from savant syndrome, a system
excelling on the scale of general PAI could still be limited to strong performance on par-
ticular cognitive tasks rather than exhibiting the desired general human-level intelligence
(or beyond) — leaving even the best-willing behaviorist with unsurmountable doubts
about whether the overall goal of HLAI has completely been achieved.

8.3. Turing revisited: The Sub-Turing Test(s)

In contrast to the psychometrics-based approach of the previous section, Besold (2013e)
outlines a behavior-based test in the vein of Turing (1950)’s first proposal for a test for
human-like capabilities of an artificial intelligence. The suggested Sub-Turing challenges
for designing and testing artificially intelligent systems try to address human-level intel-
ligence (or the recreation thereof in an artificial system) in terms of four interconnected
sub tasks which, when taken together, are assumed to cover large parts of what would
be needed to construct a serious competitor for solving HLAI: The first one addresses
human language understanding, the second one human language production, the third
one deals with human rationality and the fourth one refers to human operational or pro-
ductive creativity. As criterion of whether the machine passes or fails the respective test
a jury criterion putting the artificial system in competition with human subjects (i.e.,
closely resembling Turing’s proposal) is introduced.
SubTuring I asks for the development of a system which should be capable of mapping

natural language input onto expressions of a formal language and matching concepts in a
lexical ontology, whilst SubTuring II demands the reversal of this process in that a set of
formal language descriptions of situations, together with corresponding concepts in a lex-
ical ontology, should be converted into human-like natural language output re-describing
the situations. Out of the four sub tasks, the first two are probably the best studied this
far: Among others disciplines, such as natural language processing, ontology engineering
and (important parts of) data mining, are addressing closely related or sometimes even
identical issues. Still, the challenges have not yet been solved and more targeted research
in these areas will be needed.
SubTuring III, addressing human rationality, asks for a system to be capable of, pro-

vided with a set of situational descriptions and a problem or task description, solving or
deciding a rationality problem/task. Similar to the argument made in Chap. 6, success-
fully solving SubTuring III would require a positive, computationally implementable and
effectively runnable theory of human rationality instead of the mostly normative notions
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currently under study — here, cognitive modeling and, in general, cognitive science might
give a very much needed helping hand.
SubTuring IV finally deals with human-level creativity: Provided with a description of

a situation and an operational or productive creativity task or problem, the system would
have to solve the problem/task in a human-like manner. Within AI, there is only little
previous work trying to address creativity on a larger scale, and even within the dedicated
field of computational creativity (of which an overview description has, for instance, been
provided by Colton et al. (2009)) only very few projects or programs explicitly address
these issues in a broader sense.
Taking all four SubTuring tasks together, and provided that some merit is granted to

behavioral tests of the Turing type, the sketched proposal has at least one significant
advantage over Turing (1950)’s original version: Whilst the latter provides only very
little structure or hint at how to approach the problem, the SubTuring tasks introduce
a division into four sub tasks all of which, from an engineering perspective, seem to be
better defined than the mere domain- and faculty-unspecific human-likeness criterion as
advocated by Turing. SubTuring I-IV contain an implicit commitment to what are (at
least) necessary or (at best) sufficient compounds an artificial intelligence would have
to contain for credibly addressing HLAI in its fullest generality — with the behavioral
nature of the test rather being taken as an advantage than as a shortcoming given that
there is no clear characterization of what intelligence as a cognitive capacity actually is
or can be.

In summary, the work discussed in this chapter advocates for AI and HLAI to be taken
serious in their scientific aspirations, and even more hints at the necessity of a scientific
approach to the respective research questions. Another, more detailed case for AI and
HLAI as (empirical) science has, for instance, been made by Simon (1995). Concerning
the assessment and testability dimension, whilst the currently popular suggestion of us-
ing Psychometric AI as a foundation for making progress in HLAI measurable has been
identified as not unproblematic and as in all likelihood falling short of its promised capa-
bilities, the SubTuring tasks have instead been suggested as a refinement of the Turing
Test. Concerning related efforts, especially with respect to alternatives or modifications
to the original Turing idea, there is a significant body of work spearheaded, for example,
by Harnad (1991) and his “Total Turing Test” (which demands in addition to the stan-
dard Turing criteria to also take perceptual abilities and the capability of physical object
manipulation into account) or by McKinstry (1997)’s conceptually opposed “Minimum
Intelligent Signal Test” (which only allows the binary responses yes/no or /true/false in
order to to exclusively focus on the capacity for thought).
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As already pointed out in the opening paragraphs of Chap. 1, a significant part of the
reported work has to be considered exploratory in nature, testing the general suitability
of paradigms across domains and the overall feasibility of approaches in different contexts
by providing proof of concept applications and examples rather than taking one precise
problem and developing one exact solution for that particular task until its possibilities
on that one scenario have been exhausted. Consequently, whilst still tying into each other
on different levels and in their interrelatedness suggesting answers to several foundational
questions (such as “What could be guiding constraints for research and development in
HLAI?” or “How can human high-level cognitive capacities, such as conceptual blending
or decision-making, computationally be modeled in a unified manner?”), each of the
different sub-projects also has an existence of its own and could be further developed in
its own direction.
The work on conceptual blending reported on in Chap. 4 by now has been taken up in a

coordinated European research project called “Concept Invention Theory (COINVENT)”
aiming at developing a mathematically sound, computationally feasible and cognitively
inspired formal model of concept invention. Concerning the studies on the use of compu-
tational analogy engines for modeling analogy-based methods and tools from education
and teaching discussed in Chap. 5, a logical next step would be to compare the results
from the computational model to quantitative psychological data and to better tune the
models to match the experimental data — which hopefully would allow to subsequently
use the analogy engine also for predictions about the success or failure of new educational
analogies or for the improvement of existing ones. The efforts on the use of analogy (and
computational models thereof) in explaining, modeling and (re)implementing human
decision-making, judgment and in general behavior, described in Chap. 6, as a next step
would also profit from an actual implementation of the proposed theory and architec-
ture and an application of the outcome to experimental data from decision studies and
choice experiments. With respect to the theoretical developments sketched in Chap. 7,
two directions offer themselves for follow-up investigations: On the one hand, thorough
analysis of existing cognitive architectures and candidate systems for becoming an HLAI
is needed in order to provide further examples of the chances and usefulness the proposed
forms of formal examination offer (and also in order to separate more promising from less
auspicious projects and possibly refocus efforts within the field), whilst on the other hand
the existing formal machinery should be further developed either by introducing more
already existing but widely ignored tools and techniques to a wider audience, or by ac-
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tively working on new approaches, such as the mentioned structure-based approximation
methods. Finally, returning to Chap. 8, AI and HLAI as every other scientific endeavor
needs means of evaluating its progress and deciding over success or failure, therefore fur-
ther proposals for meaningful and feasible ways of testing the state of development of a
cognitive system or an HLAI project are needed.
In summary, the main merit of work reported in this thesis is twofold: On the one

hand, using analogy as starting point, examples are given as inductive evidence for how
a cognitively-inspired approach to questions in HLAI can be fruitful by and within itself.
On the other hand, (some of) the advantages of such a perspective also with respect
to overcoming certain intrinsic problems currently characterizing HLAI research in its
entirety — such as the domain dependence and lack of generalizability of specialized
solution methods or the reliance on raw computational power instead of versatile and
efficient solution mechanisms — are exposed. In terms of individual outcomes, an analogy-
based proposal for theory blending as special form of conceptual blending is introduced
and exemplified, the usefulness of computational analogy frameworks for understanding
learning and education is shown and a corresponding research program is suggested, a
subject-centered notion of rationality and a sketch for how the resulting theory could
computationally be modeled using an analogy framework is discussed, computational
complexity and approximability considerations are introduced as guiding principles for
work in HLAI, and the scientific status of HLAI, as well as two possible tests for assessing
progress in HLAI, are addressed.

I want to close with two quotes, one by Papadimitriou and Yannakakis (1991) and one
by Turing (1950):

“Once more, we have decreased the number of open questions in the field —
without, alas, increasing much the number of answers! ” (C. H. Papadimitriou
and M. Yannakis)

“We can only see a short distance ahead, but we can see plenty there that
needs to be done.” (A. Turing)
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A. Overview of Basic Mechanisms of
Heuristic-Driven Theory Projection

According to Schwering et al. (2009a) and others, the HDTP framework has been con-
ceived as a mathematically sound theoretical framework and implemented engine for
computational analogy-making. As further explained by Guhe et al. (2011), HDTP more
precisely has been created for computing analogical relations and inferences for domains
which are given in form of many-sorted FOL representations: Source and target of the
analogy-making process are defined in terms of axiomatizations, i.e., given by a finite set
of formulae. From there, HDTP tries to align pairs of formulae from the two domains by
means of anti-unification. Anti-unification, as introduced by Plotkin (1970) and Plotkin
(1971), is the dual to the more prominent unification problem. Basically, anti-unification
tries to solve the problem of generalizing terms in a meaningful way, yielding for each
term an anti-instance, in which distinct sub-terms have been replaced by variables (which
in turn would allow for a retrieval of the original terms by a substitution of the variables
by appropriate sub-terms).
The goal of anti-unification is to find a most specific anti-unifier, i.e., the least general

generalization of the involved terms.1 HDTP extends first-order anti-unification to a
restricted form of higher-order anti-unification, as mere first-order structures must be
considered as too weak for the purpose of analogy-making: Structural commonalities can
be embedded in different contexts, and therefore would not be accessible by first-order
anti-unification only.
In Krumnack et al. (2007)’s conceptualization of restricted higher-order anti-unification

a new notion of substitution is introduced in order to restrain generalizations from be-
coming arbitrarily complex. Classical first-order terms are extended by the introduction
of variables which may take arguments (where original first-order variables correspond
to variables with arity 0), making a term either a first-order or a higher-order term.
Subsequently, anti-unification can be applied analogously to the original first-order case,
yielding a generalization subsuming the specific terms.
As already indicated by the name, the class of substitutions which are applicable in

HDTP is restricted to (compositions of) the following four cases: renamings, fixations,
argument insertions, and permutations.

1Plotkin (1970) has shown that for a proper definition of generalization, for a given pair of terms there
always is a first-order generalization, and that there is exactly one least general first-order generalization
(up to renaming of variables).
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Definition. Substitutions in Restricted Higher-Order Anti-Unification
Let V = {x1 : s1, x2 : s2, . . .} be an infinite set of sorted variables, where the sorts are chosen
from a set of sorts Sort. Associated with each variable xi : si is an arity, analogous to the
standard arity of function symbols. For any i ≥ 0, we let Vi be the variables of arity i.

1. A renaming ρ(F, F ′) replaces a variable F ∈ Vn with another variable F ′ ∈ Vn:
F (t1, . . . , tn)

ρ(F,F ′)−−−−−→ F ′(t1, . . . , tn).

2. A fixation φ(F, f) replaces a variable F ∈ Vn with a function symbol f ∈ Cn:
F (t1, . . . , tn)

φ(F,f)−−−−→ f(t1, . . . , tn).

3. An argument insertion ι(F, F ′, V, i) is defined as follows, where F ∈ Vn, F ′ ∈
Vn−k+1, V ∈ Vk, i ∈ [n]:

F (t1, . . . , tn)
ι(F,F ′,V,i)−−−−−−−→ F ′(t1, . . . , ti−1, V (ti, . . . , ti+k−1), ti+k, . . . , tn).

It “wraps” k of the subterms in a term using a k-ary variable, or can be used to insert
a 0-ary variable.

4. A permutation π(F, τ) rearranges the arguments of a term, with F ∈ Vn, τ : [n]→ [n]
a bijection:
F (t1, . . . , tn)

π(F,τ)−−−−→ F (tτ(1), . . . , tτ(n)).

A restricted substitution is a substitution which results from the composition of any sequence
of unit substitutions.

Krumnack et al. (2007) show that this new form of (higher-order) substitution is a real
extension of the first-order case, which has proven to be capable of detecting structural
commonalities not accessible to first-order anti-unification. In some form of trade-off,
the least general generalization unfortunately loses its uniqueness. Therefore, HDTP
ranks generalizations according to a complexity order on the complexity of generalization
(based on a complexity measure for substitutions), and finally chooses the least complex
generalizations as preferred ones. From a practical point of view, it is also necessary to
anti-unify not only terms, but formulae: HDTP extends the notion of generalization also
to formulae by basically treating formulae in clause form and terms alike (as positive
literals are structurally equal to function expressions, and complex clauses in normal
form may be treated component wise).
Furthermore, analogies in general not only rely on an isolated pair of formulae from

source and target, but on two sets of formulae. Here, a heuristic is applied when iteratively
selecting pairs of formulae to be generalized: Coherent mappings outmatch incoherent
ones, i.e., mappings in which substitutions can be reused are preferred over isolated sub-
stitutions, as they are assumed to be better suited to induce the analogical relation.
Once obtained, the generalized theory and the substitutions specify the analogical rela-
tion, and formulae of the source for which no correspondence in the target domain can
be found may, by means of the already established substitutions, be transferred to the
target, constituting a process of analogical transfer between the domains.
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For a more in-depth introduction to the framework and the actual system, see, for in-
stance, Schmidt et al. (2014).
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B. Overview of Basic Definitions From
Parameterized Complexity Theory

Definition. Parameterized Decision Problem
An instance of a parameterized decision problem P is a tuple (x, κ), where x ∈ {0, 1}∗ is
a string describing the problem and κ ∈ Z, which is called the parameter of the problem
(codifying other aspects of the problem besides n).

Similar to the use of the complexity class P in standard complexity theory, tractability
in parameterized complexity theory is defined using the class FPT:

Definition. Fixed-Parameter Tractability FPT
A parameterized decision problem P is fixed parameter tractable, written P ∈ FPT, if it
is solvable in time bounded by f(κ) · |x|O(1), where f(κ) is some computable function of the
parameters and |x|O(1) denotes a polynomial of the length of the input.

Or, equivalently:

Definition. Fixed-Parameter Tractability FPT
A parameterized decision problem P is in FPT if P admits an O(f(κ)nc) algorithm, where
n is the input size, κ is a parameter of the input, c is an independent constant, and f is
some computable function.

Similar to standard complexity theory, parameterized complexity theory also applies
reductions as one of its main tools:

Definition. Parameterized Reduction:
Given two parameterized problems P,Q, a parameterized reduction is a function φ from P
to Q such that the following holds, for an instance (x, κ) ∈ P:
1.) φ(x) is computable in time f(κ) · |x|O(1), where f is a computable function of the
parameter.
2.) x ∈ P if and only if φ(x) ∈ Q.
3.) If κ′ is the parameter of φ(x), then κ′ = g(κ) for some function g.

The parameterized complexity hierarchy is established using different versions of Weighted
Circuit Satisfiability as reference problem for the respective classes:
Let the weft of a boolean circuit (containing only NOT gates, small AND and OR gates

of fan-in ≤ 2 and large AND or OR gates of arbitrary finite fan-in) be the maximum
number of large gates on any path from an input to the output, and let the depth be the
maximum number of all gates on a path. Let C[t, d] be the set of all circuits of weft at
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most t and depth at most d. Finally, define the (Hamming) weight of an assignment of
truth values to the input variables of the circuit as the number of variables set to 1.

Problem. Weighted Circuit Satisfiability[t, d]
Input: A circuit C of depth d and weft t, a natural k ∈ N.
Problem: Is there a satisfying assignment to C with weight k?

Definition. W Hierarchy
We say a parameterized problem P is in W[i] if it is reducible by a parameterized reduction
to Weighted Circuit Satisfiability[i, d] for some constant d, and is W[i]-hard if every problem
in W [i] is reducible to P under a parameterized reduction.

Knowing that FPT = W[0], the assumption that FPT 6= W[1] can be seen as analogous
to the assumption that P 6= NP in standard complexity theory.
It is conjectured that W[i] (W [j] for any i < j.
The FPT membership of a problem entails the reducibility of each instance to a problem
kernel (and vice versa):

Definition. Kernelization
Let P be a parameterized problem. A kernelization of P is an algorithm which takes an
instance x of P with parameter κ and maps it in polynomial time to an instance y such
that x ∈ P if and only if y ∈ P, and the size of y is bounded by f(κ) (where f is some
computable function).

Definition. Kernelizability
A problem P is in FPT if and only if it is kernelizable.

For a more in-depth introduction to parameterized complexity, see, for instance, Downey
and Fellows (1999) or Flum and Grohe (2006).
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C. Overview of Basic Definitions From
Approximation Theory

Approximation theory, similar to complexity theory, also works with problem classes and
a corresponding hierarchy. One of the most important classes towards the lower end of
the hierarchy is PTAS, the class of problems admitting polynomial-time approximation
schemes:
Definition. Polynomial-Time Approximability PTAS
An optimization problem P is in PTAS if for each parameter ε > 0 there is an algorithm
which takes an instance of P of size n together with ε and, in time polynomial in n, produces
a solution that is within a factor 1+ε of being optimal (or 1−ε for maximization problems).

Located one major step higher in the class hierarchy is APX, the class of constant-factor
approximable problems:

Definition. Constant-Factor Approximability APX
An optimization problem P is in APX if P admits a constant-factor approximation algorithm,
i.e., there is a constant factor ε > 0 and an algorithm which takes an instance of P of size
n and, in time polynomial in n, produces a solution that is within a factor 1 + ε of being
optimal (or 1− ε for maximization problems).

Supposing P 6= NP, it holds that PTAS ( APX.
As shown by Cai and Huang (2006), APX membership also implies membership in the
more general class of fixed-parameter approximable problems FPA:

Definition. Fixed-Parameter Approximabiliy FPA
The fixed-parameter version P of a minimization problem is in FPA if — for a recursive
function f , a constant κ, and some fixed recursive function g — there exists an algorithm
such that for any given problem instance I with parameter κ, and question OPT (I) ≤ κ,
the algorithm which runs in O(f(κ)nc) (where n = |I|) either outputs “no” or produces a
solution of cost at most g(κ).

For a more in-depth introduction to approximation theory, see, for instance, Vazirani
(2010) or Marx (2008) for a more specific overview of work at the intersection between
parameterized complexity and approximation theory.
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Chapter 3

Complex Analogies: Remarks on the Complexity of HDTP
(R. Robere and T. R. Besold)

Abstract:

After an introduction to Heuristic-Driven Theory Projection (HDTP) as framework for
computational analogy-making, and a compact primer on parametrized complexity the-
ory, we provide a complexity analysis of the key mechanisms underlying HDTP, together
with a short discussion of and reflection on the obtained results. Amongst others, we
show that restricted higher-order anti-unification as currently used in HDTP is W[1]-
hard (and thus NP-hard) already for quite simple cases. Also, we obtain W[2]-hardness,
and NP-completeness, for the original mechanism used for reducing second-order to first-
order anti-unifications in the basic version of the HDTP system.
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When Almost Is Not Even Close: Remarks on the
Approximability of HDTP (T. R. Besold and R. Robere)

Abstract:

A growing number of researchers in Cognitive Science advocate the thesis that human
cognitive capacities are constrained by computational tractability. If right, this thesis also
can be expected to have far-reaching consequences for work in Artificial General Intelli-
gence: Models and systems considered as basis for the development of general cognitive
architectures with human-like performance would also have to comply with tractability
constraints, making in-depth complexity theoretic analysis a necessary and important
part of the standard research and development cycle already from a rather early stage.
In this paper we present an application case study for such an analysis based on results
from a parametrized complexity and approximation theoretic analysis of the Heuristic
Driven Theory Projection (HDTP) analogy-making framework.
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Chapter 4

Towards a Domain-Independent Computational Framework
for Theory Blending (M. Martinez et al.)

Abstract:

The literature on conceptual blending and metaphor-making has illustrations galore of
how these mechanisms may support the creation and grounding of new concepts (or whole
domains) in terms of a complex, integrated network of older ones. In spite of this, as of
yet there is no general computational account of blending and metaphor-making that
has proven powerful enough as to cover all the examples from the literature. This paper
proposes a logic-based framework for blending and metaphor making and explores its
applicability in settings as diverse as mathematical domain formation, classical rationality
puzzles, and noun-noun combinations.

Originally published as:
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Theory Blending as Framework for Creativity in Systems for
General Intelligence (M. Martinez et al.)

Abstract:

Being creative is a central property of humans in solving problems, adapting to new states
of affairs, applying successful strategies in previously unseen situations, or coming up with
new conceptualizations. General intelligent systems should have a potential to realize to
a certain extent such forms of creativity. We think that creativity and productivity issues
can be best addressed by taking cognitive mechanisms into account, such as analogy–
making, concept blending, computing generalizations and the like. In this paper, we
argue for the usage of such mechanisms for creativity. We exemplify the potential of
such a mechanisms like theory blending using a historical example from mathematics.
Furthermore, we argue for the claim that modeling creativity by such mechanisms has a
huge potential in a variety of domains.
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Chapter 5

Analogy Engines in Classroom Teaching: Modeling the
String Circuit Analogy (T. R. Besold)

Abstract:

The importance of analogy-making and analogy-based reasoning for human cognition and
learning by now has widely been recognized, and analogy-based methods are slowly also
being explicitly integrated into the canon of approved education and teaching techniques.
Still, the actual level of knowledge about analogy as instructional means and device as
of today is rather low and subject to scientific study and investigation. In this paper, we
propose the fruitful use of computational analogy-engines as methodological tool in this
domain of research, motivating our claim by a short case study showing how Heuristic-
Driven Theory Projection can be used to model the mode of operation of an analogy
taken from a science class for 8 to 9 year old children.
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Analogy and Arithmetic: An HDTP-Based Model of the
Calculation Circular Staircase (T. R. Besold et al.)

Abstract:

Analogical reasoning and its applications are gaining attention not only in cognitive
science but also in the context of education and teaching. In this paper we provide a short
analysis and a detailed formal model (based on the Heuristic-Driven Theory Projection
framework for computational analogy-making) of the Calculation Circular Staircase, a
tool for teaching basic arithmetic and insights based on the ordinal number conception
of the natural numbers to children in their first years of primary school. We argue that
such formal methods and computational accounts of analogy-making can be used to gain
additional insights in the inner workings of analogy-based educational methods and tools.

Originally published as:

T. R. Besold, A. Pease and M. Schmidt.Analogy and Arithmetic: An HDTP-Based
Model of the Calculation Circular Staircase . In Proceedings of the 35th Annual
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88



Applying AI for Modeling and Understanding Analogy-Based
Classroom Teaching Tools & Techniques (T. R Besold and
K.-U. Kühnberger)

Abstract:

This paper forms the final part of a short series of related articles dedicated to highlighting
a fruitful type of application of cognitively-inspired analogy engines in an educational
context. It complements the earlier work with an additional fully worked out example by
providing a short analysis and a detailed formal model (based on the Heuristic-Driven
Theory Projection computational analogy framework) of the Number Highrise, a tool
for teaching multiplication-based relations in the range of natural numbers up to 100 to
children in their first years of primary school.
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Sensorimotor Analogies in Learning Abstract Skills and
Knowledge: Modeling Analogy-Supported Education in
Mathematics and Physics (T. R. Besold)

Abstract:

In this summary report I give an account of research conducted over the last two years,
showing the suitability and the advantages of applying computational analogy-engines
in the analysis and design of analogy-based methods and tools in teaching and educa-
tion. This overview constitutes the conclusion of the first phase of a multi-stage effort
trying to introduce computational models of analogy also to education and the learning
sciences, thus opening up these fields to computational tools and methods not only on
an instrumental level, but also in analytical, conceptual, and design-oriented studies. I
locate the “analogy-engines in the classroom” research program within the bigger schemes
of studying human creativity and computational creativity, provide an introduction to
the theoretical underpinnings of the endeavor, and revisit three worked out case studies
serving as proofs of the feasibility of the overall approach.

Originally published as:

T. R. Besold. Sensorimotor Analogies in Learning Abstract Skills and Knowl-
edge: Modeling Analogy-Supported Education in Mathematics and Physics.
In AAAI Technical Report of the AAAI Fall 2014 Symposium on Modeling Changing
Perspectives: Reconceptualizing Sensorimotor Experiences. AAAI Press, 2014

URL:
http://www.aaai.org/Press/Reports/Symposia/Fall/fs-14-05.php

90



Chapter 6

Rationality {in|for|through} AI (T. R. Besold)

Abstract:

Based on an assessment of the history and status quo of the concept of rationality within
AI, I propose to establish research on (artificial) rationality as a research program in its
own right, aiming at developing appropriate notions and theories of rationality suitable
for the special needs and purposes of AI. I identify already existing initial attempts at
and possible foundations of such an endeavor, give an account of motivations, expected
consequences and rewards, and outline how such a program could be linked to efforts in
other disciplines.

Originally published as:
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E Pluribus Multa in Unum: The Rationality Multiverse (T.
R. Besold and K.-U. Kühnberger)

Abstract:

The paper argues for a new view on and an approach to rationality as a concept of study
and modeling paradigm of human behavior. After critically reviewing classical (norma-
tive) approaches to rationality, decision-making, and rational behavior, we present cor-
nerstones of a positive, integrative, and holistic conception of these cognitive capacities.
A discussion of key elements of this new view is given, and possible consequences and
implications are considered.

Originally published as:
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Rationality in Context: An Analogical Perspective (T. R.
Besold)

Abstract:

At times, human behavior seems erratic and irrational. Therefore, when modeling hu-
man decision-making, it seems reasonable to take the remarkable abilities of humans
into account with respect to rational behavior, but also their apparent deviations from
the normative standards of rationality shining up in certain rationality tasks. Based on
well-known challenges for human rationality, together with results from psychological
studies on decision-making and from previous work in the field of computational mod-
eling of analogy-making, I argue that the analysis and modeling of rational belief and
behavior should also consider context-related cognitive mechanisms like analogy-making
and coherence maximization of the background theory. Subsequently, I conceptually out-
line a high-level algorithmic approach for a Heuristic Driven Theory Projection-based
system for simulating context-dependent human-style rational behavior. Finally, I show
and elaborate on the close connections, but also on the significant differences, of this
approach to notions of “ecological rationality”.
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Chapter 7

When Thinking Never Comes to a Halt: Using Formal
Methods in Making Sure Your AI Gets the Job Done Good
Enough (T. R. Besold and R. Robere)

Abstract:

The recognition that human minds/brains are finite systems with limited resources for
computation has led researchers in cognitive science to advance the Tractable Cogni-
tion thesis: Human cognitive capacities are constrained by computational tractability.
As also human-level AI in its attempt to recreate intelligence and capacities inspired by
the human mind is dealing with finite systems, transferring this thesis and adapting it
accordingly may give rise to insights that can help in progressing towards meeting the
classical goal of AI in creating machines equipped with capacities rivaling human intel-
ligence. Therefore, we develop the “Tractable Artificial and General Intelligence Thesis”
and corresponding formal models usable for guiding the development of cognitive systems
and models by applying notions from parameterized complexity theory and the theory
of hardness of approximation to a general AI framework. In this chapter we provide an
overview of our work, putting special emphasis on connections and correspondences to
the heuristics framework as recent development within cognitive science and cognitive
psychology.

Originally published as:
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When Thinking Never Comes to a Halt:
Using Formal Methods in Making Sure Your AI
Gets the Job Done Good Enough∗

Tarek R. Besold and Robert Robere

Abstract The recognition that human minds/brains are finite systems with limited
resources for computation has led researchers in cognitive science to advance the
Tractable Cognition thesis: Human cognitive capacities are constrained by compu-
tational tractability. As also human-level AI in its attempt to recreate intelligence
and capacities inspired by the human mind is dealing with finite systems, transfer-
ring this thesis and adapting it accordingly may give rise to insights that can help in
progressing towards meeting the classical goal of AI in creating machines equipped
with capacities rivaling human intelligence. Therefore, we develop the “Tractable
Artificial and General Intelligence Thesis” and corresponding formal models usable
for guiding the development of cognitive systems and models by applying notions
from parameterized complexity theory and hardness of approximation to a general
AI framework. In this chapter we provide an overview of our work, putting special
emphasis on connections and correspondences to the heuristics framework as recent
development within cognitive science and cognitive psychology.

1 Introduction: The Importance of Formal Analysis for
Cognitive Systems Research

After a certain abandonment of the original dream(s) of artificial intelligence (AI)
towards the end of the last century, research in cognitive systems, artificial human-
level intelligence, complex cognition, and integrated intelligent systems over the
last decade has witnessed a revival and is now entering its second spring with sev-
eral specifically dedicated conference series, symposia, workshops, journals and a
growing number of books and high-profile research projects. Still, quite some fun-
damental questions remain to be answered before a unified approach to solving
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2 T. R. Besold and R. Robere

the big riddles underlying the (re)creation of human-level intelligence and cogni-
tion may arise. Currently, there are many different paradigms competing with each
other: Symbolism versus connectionism, high-level modeling of specific cognitive
capacities versus low-level models with emergent behavior, holistic versus modular
approaches.

Each of these paradigms brings along its own terminology, conceptual perspec-
tive, and engineering methods, resulting in a wide variety of approaches to solving
the intelligence puzzle. This, in turn, makes it hard to establish standards and in-
sights in cognitive models and cognitive systems which are valid on a general level
independent of the chosen perspective and methodology. Still, there are a few ele-
ments common to most (if not all) of the mentioned approaches (in that, for instance,
they are applied in attempts to model one or several human cognitive capacities),
making the wish for general principles and results more urgent. Here, formal meth-
ods and analysis can provide a solution: Due to their general nature they can often be
applied without prior commitment to a particular formalism or architecture, allow-
ing to establish high-level insights and generally applicable findings. In other words,
these techniques can provide guidelines and hints at how to unify approaches and
progress towards the overall goals of the respective research programs.

In what follows, we give an overview of the status quo of our work on the topic,
combining previous independently published contributions and extending the indi-
vidual pieces into a unified whole. This summary shall provide both evidence sup-
porting the just made claims about the possible role of formal methods for general
high-level AI design, and concrete insights concerning heuristics and their use in
cognitive systems as important specific example. Sect. 2 introduces the mindset un-
derlying our work before Sect. 3 summarizes important theoretical results, followed
by a worked application case for our approach in Sect. 4. Opening the second half of
the chapter, Sect. 5 then elaborates the connection between the notion of cognitive
heuristics (and their models) to recent results from parameterized complexity and
the theory of hardness of approximation, before Sect. 6 addresses some of the most
common criticisms targeting the application of formal methods to work in AI and
cognitive systems. Sect. 7 concludes the chapter, connecting it to related work by
other scholars and pointing out some future directions of development.

2 Complexity and Cognition

Two famous ideas conceptually lie at the heart of many endeavors in computa-
tional cognitive modeling, cognitive systems research and artificial intelligence: The
“computer metaphor” of the mind, i.e. the concept of a computational theory of mind
as described in Pylyshyn (1980), and the Church-Turing thesis (a familiar version
of which is stated in Turing (1969)). The former bridges the gap between humans
and computers by advocating the claim that the human mind and brain can be seen
as an information processing system and that reasoning and thinking corresponds to
processes that meet the technical definition of computation as formal symbol manip-
ulation, the latter gives an account of the nature and limitations of the computational
power of such a system: Every function for which there is an algorithm (i.e., those
functions which are “intuitively computable” by a sequence of steps) is computable
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by a Turing machine — and functions that are not computable by such a machine
are to be considered not computable in principle by any machine.

But the “computer metaphor” and the Church-Turing thesis also had signifi-
cant impact on cognitive science and cognitive psychology. As stated in Cummins
(2000), one of the primary aims of cognitive psychology is to explain human cogni-
tive capacities — which are often modeled in terms of computational-level theories
of cognitive processes (i.e., as precise characterizations of the hypothesized inputs
and outputs of the respective capacities together with the functional mappings be-
tween them; c.f. Marr (1982) for details). Unfortunately, computational-level theo-
ries are often underconstrained by the available empirical data, allowing for several
different input-output mappings and corresponding theories. A first attempt at mit-
igating this problem can now be based on the aforegiven Church-Turing thesis: If
the thesis were true, the set of functions computable by a cognitive system would be
a subset of the Turing-computable functions. Now, if a computational-level theory
would assume that the cognitive system under study computes a function uncom-
putable by a Turing machine then the model could already be rejected on theoretical
grounds.

Still, directly applying the notion of Turing computability as equivalent to the
power of cognitive computation has to be considered overly simplistic. Whilst it
has been commonly accepted that the thesis holds in general, its practical relevance
in cognitive agents and systems is at least questionable. As already recognized in
Simon (1957), actual cognitive systems (due to their nature as physical systems)
need to perform their tasks in limited time and with a limited amount of space at their
disposal. Therefore, the Church-Turing thesis by itself is not strict enough for being
used as a constraint on cognitive theories as it does not take into account any of these
dimensions. To mitigate this problem, different researchers over the last decades
have proposed the use of mathematical complexity theory, like the concept of NP-
completeness, as an assisting tool (see, e.g., Levesque (1988); Frixione (2001)),
bringing forth the so called “P-Cognition thesis”: Human cognitive capacities are
hypothesized to be of the polynomial-time computable type.

However, using the “polynomial-time computable” as synonymous with “effi-
cient” may already be overly restrictive. In modern times there are many examples
of problems which have algorithms that have worst-case exponential behaviour, but
tend to work quite well in practice on small inputs (take, for example, any of the
modern algorithms for the travelling salesperson problem). However, this is not the
type of restriction that we will focus on. Instead we take the following viewpoint: it
is often the case that we as humans are able to solve problems which may be hard
in general but suddenly become feasible if certain parameters of the problem are
restricted. This idea has been formalized in the field of parameterized complexity
theory, in which “tractability” is captured by the class of fixed-parameter tractable
problems FPT:2

Definition 1. FPT
A problem P is in FPT if P admits an O( f (κ)nc) algorithm, where n is the input size, κ is a
parameter of the input constrained to be “small”, c is an independent constant, and f is some
computable function.

2 For an introduction to parameterized complexity theory see, e.g., Flum and Grohe (2006);
Downey and Fellows (1999).
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Originating from this line of thought, van Rooij (2008) introduces a specific ver-
sion of the claim that cognition and cognitive capacities are constrained by the fact
that humans basically are finite systems with only limited resources for computa-
tion: Applying the just presented definition from parameterized complexity theory,
this basic notion of resource-bounded computation for cognition is formalized in
terms of the so called “FPT-Cognition thesis”, demanding for human cognitive ca-
pacities to be fixed-parameter tractable for one or more input parameters that are
small in practice (i.e., stating that the computational-level theories have to be in
FPT).

3 Theoretical Foundation: The Tractable AGI Thesis

But whilst the aforementioned P-Cognition thesis also found its way into AI (cf.,
e.g., Cooper (1990); Nebel (1996)), the FPT-Cognition thesis this far has widely
been ignored. Recognizing this as a serious deficit, for example in Robere and
Besold (2012) and Besold and Robere (2013a), we proposed a way of (re)introducing
the idea of tractable computability for cognition into AI and cognitive systems
research by rephrasing and accordingly adapting the FPT-form of the Tractable
Cognition thesis. As all of the currently available computing systems used for im-
plementing cognitive models and cognitive systems are ultimately finite systems
with limited resources (and thus in this respect are not different from other cog-
nitive agents and human minds and/or brains), in close analogy we developed the
“Tractable AGI thesis” (Tractable Artificial and General Intelligence thesis).

Tractable AGI thesis
Models of cognitive capacities in artificial intelligence and computational cogni-
tive systems have to be fixed-parameter tractable for one or more input parameters
that are small in practice (i.e., have to be in FPT).

Concerning the interpretation of this thesis, suppose a cognitive modeler or AI
system designer is able to prove that his model at hand is — although in its most
general form possibly NP-hard — fixed-parameter tractable for some set of param-
eters κ. This implies that if the parameters in κ are fixed small constants for problem
instances realized in practice, then it is possible to efficiently compute a solution.

4 Worked Example: Complex Analogies in HDTP

Before further continuing the theoretical line of work in Sect. 5, we want to spend
some time on a worked application case of analyzing a cognitive AI system by
means of formal methods. We therefore give a fairly detailed reproduction of results
from a parameterized complexity study of the Heuristic-Driven Theory Projection
(HDTP) computational analogy-making framework (originally presented in Robere
and Besold (2012)). By this we hope to show how the mostly academic-theoretical
considerations from Sect. 2 and 3 directly connect to everyday AI and cognitive
systems practice.
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4.1 The Motivation Behind It

During the course of a day, we use different kinds of reasoning processes: We solve
puzzles, play instruments, or discuss problems. Often we will find ourselves in
places and times in which we apply our knowledge of a familiar situation to the
(structurally similar) novel one. Today it is undoubted that one of the basic elements
of human cognition is the ability to see two a priori distinct domains as similar based
on their shared relational structure (i.e., analogy-making). Some prominent cogni-
tive scientists as, for example, Hofstadter (2001), go as far as to consider analogy
the core of cognition itself. Key abilities within everyday life, such as communica-
tion, social interaction, tool use, and the handling of previously unseen situations
crucially rely on the use of analogy-based strategies and procedures. One of the key
mechanisms underlying analogy-making, relational matching, is also the basis of
perception, language, learning, memory and thinking, i.e., the constituent elements
of most conceptions of cognition (Schwering et al (2009b)).

Because of this crucial role of analogy in human cognition, researchers in cogni-
tive science and artificial intelligence have been creating computational models of
analogy-making since the advent of computer systems. But the field has changed
significantly during that time: Early work such as that of Reitman et al (1964) or
Evans (1964) should serve as a proof of concept for the possibilities and the power
of AI systems, possibly paving the way for more flexible approaches to reasoning
and artificial cognition. Still, from a theoretical and methodological point of view
these systems were not necessarily committed to considerations concerning cogni-
tive adequacy or psychological plausibility and did not correspond to a fully de-
veloped underlying theoretical paradigm about human analogy-making. In contrast,
modern analogy systems – the most prominent of which probably is the Structure-
Mapping Engine (SME, Falkenhainer et al (1989)) and MAC/FAC (Gentner and For-
bus (1991)) – come with their respective theory about how analogy-making works
on a human scale (see, e.g., Gentner (1983) for the theory behind SME) and of-
ten even make claims not only on a computational level of description, but even
hypothesize more or less precisely specified algorithmic mechanisms of analogy.

And this now is where our proposed approach for formal analysis comes into
play: If human-likeness in a system’s theoretical foundations and behavior is as-
sumed, it should also automatically become clear that the same standards of evalu-
ation and the same formal properties which are true for human cognition have to be
met and have to hold for the system. Moreover this has to be the case in general and
not only on a selected subset of examples or under positively limiting conditions
and a priori assumptions on the possible cases a system might encounter (unless, of
course, these assumptions can also be made without loss of generality for the human
counterpart). Analogy-making is a prime example for this setting as — precisely due
to the aforementioned variety of occurrences and manifestations of this cognitive ca-
pacity — the architect of a cognitive system model of analogy has to make sure that
certain properties of the system hold true with a high degree of independence from
the specific problem case at hand.

Furthermore, from a tractability perspective, computational analogy systems
are a first-rate application area for our theoretical paradigm. Analogy-making has
gained attention in cognitive science and cognitive AI not only because of its gen-
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eral applicability but also due to the fact that humans seem to be able to retrieve
and use analogies in very efficient ways: Conversations happen in real time, social
interaction — although highly diverse in its different levels — is pervasive and in
most cases does not require attention or conscious thought (even if we are only ac-
quainted with the general rules and paradigm and not with the specific situations we
encounter), and once we understood the solution to a certain riddle or problem we
have no problem immediately applying it to analogical cases even when they are
completely different in appearance or setting.

4.2 The Formal Analysis

Heuristic-Driven Theory Projection, introduced in Schwering et al (2009a), is a for-
mal theory and corresponding software implementation, conceived as a mathemat-
ically sound framework for analogy-making. HDTP has been created for comput-
ing analogical relations and inferences for domains which are given in the form
of a many-sorted first-order logic representation. Source and target of the analogy-
making process are defined in terms of axiomatizations, i.e., given by a finite set of
formulae. HDTP tries to produce a generalization of both domains by aligning pairs
of formulae from the two domains by means of a process called anti-unification,
which tries to solve the problem of generalizing terms in a meaningful way, yield-
ing for each term an “anti-instance” in which some subterms have been replaced
by variables (which in turn would allow for a retrieval of the original terms by a
substitution of the variables by appropriate subterms).

HDTP in its present version uses a restricted form of higher-order anti-unification
presented in Krumnack et al (2007). In higher-order anti-unification, classical first-
order terms are extended by the introduction of variables which may take arguments
(where classical first-order variables correspond to variables with arity 0), making a
term either a first-order or a higher-order term. Then, anti-unification can be applied
analogously to the original first-order case, yielding a generalization subsuming the
specific terms. The class of substitutions which are applicable in HDTP is restricted
to (compositions of) the following four cases: renamings (replacing a variable by
another variable of the same argument structure), fixations (replacing a variable by
a function symbol of the same argument structure), argument insertions, and permu-
tations (an operation rearranging the arguments of a term).

This formalism has proven capable of detecting structural commonalities not ac-
cessible to first-order anti-unification, as for instance also structural commonalities
between functions and predicates within the logical language can be found and ex-
ploited (whilst the first-order formalism would in these be limited to the respective
argument positions only), allowing for a more general recognition of relational map-
pings (as opposed to mere attribute mappings). Once the generalization has been
computed, the alignments of formulae together with the respective generalizations
can be read as proposals of analogical relations between source and target domain,
and can be used for guiding an analogy-based process of transferring knowledge
between both domains (see Fig. 1 for an overview of the analogy-making process).
Analogical transfer results in structure enrichment on the target side, which corre-
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sponds to the addition of new axioms to the target theory, but may also involve the
addition of new first-order symbols.

Generalization (G)

$$zz
SOURCE (S)

analogical

relation
TARGET (T )

Fig. 1 A schematic overview of HDTP’s generalization-based approach to analogy.

Whilst HDTP undoubtedly exhibits pleasant properties – say, in terms of expres-
sivity of the modeling language, and clarity of the underlying conceptual approach
– until recently there had been no detailed analysis of its computational tractabil-
ity. In order to change this unsatisfactory state of affairs, we decided to apply some
techniques from parameterized complexity theory to the system trying to better un-
derstand its strengths and weaknesses.

As already mentioned, a restricted higher-order anti-unification is defined as any
composition of a certain set of unit substitutions which can formally be specified in
the following way:

Definition 2. Restricted higher-order anti-unification
The following are the types of unit substitutions allowed in restricted higher-order anti-
unification.

1. A renaming ρ(F,F ′) replaces a variable F ∈ Vn with another variable F ′ ∈ Vn:

F(t1, . . . , tn)
ρ(F,F ′)−−−−→ F ′(t1, . . . , tn).

2. A fixation φ(F, f ) replaces a variable F ∈ Vn with a function symbol f ∈ Cn:

F(t1, . . . , tn)
φ(F, f )−−−→ f (t1, . . . , tn).

3. An argument insertion ι(F,F ′,V, i) is defined as follows, where F ∈ Vn,F ′ ∈ Vn−k+1,V ∈
Vk, i ∈ [n]:

F(t1, . . . , tn)
ι(F,F ′,V,i)−−−−−−→ F ′(t1, . . . , ti−1,V (ti, . . . , ti+k), ti+k+1, . . . , tn).

It “wraps” k of the subterms in a term using a k-ary variable, or can be used to insert a
0-ary variable.

4. A permutation π(F,τ) rearranges the arguments of a term, with F ∈ Vn, τ : [n]→ [n] a
bijection:

F(t1, . . . , tn)
π(F,τ)−−−→ F(tπ(1), . . . , tπ(n)).

A restricted substitution is a substitution which results from the composition of any sequence
of unit substitutions.

By considering different combinations of restricted substitutions we can define
several different forms of higher-order anti-unification. Unfortunately, as already
recognized by Krumnack et al (2007), the least general generalizer is not neces-
sarily unique. Therefore, in our analysis we instead consider decision versions of
the problems parameterized by the number of substitutions, variables, and types of
variables used.

Problem 1. F Anti-Unification
Input: Two terms f ,g, and a natural k ∈ N
Problem: Is there an anti-unifier h, containing at least k variables, using only renamings and
fixations?
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Problem 2. FP Anti-Unification
Input: Two terms f ,g, and naturals l,m, p ∈ N.
Problem: Is there an anti-unifier h, containing at least l 0-ary variables and at least m higher
arity variables, and two substitutions σ,τ using only renamings, fixations, and at most p per-
mutations such that h σ−→ f and h τ−→ g?

Problem 3. FPA Anti-Unification
Input: Two terms f ,g and naturals l,m, p,a ∈ N.
Problem: Is there an anti-unifier h, containing at least l 0-ary variables, at least m higher arity
variables, and two substitutions σ,τ using renamings, fixations, at most p permutations, and
at most a argument insertions such that h σ−→ f and h τ−→ g?

We summarize our (parameterized) complexity-theoretic results of higher-order
anti-unification in the following theorem:3

Theorem 1.
1.) F Anti-Unification is solvable in polynomial time.
2.) FP Anti-Unification is NP-complete and W[1]-hard w.r.t. parameter set {m, p}.
3.) Let r be the maximum arity and s be the maximum number of subterms of the input terms.
Then FP Anti-Unification is in FPT w.r.t. parameter set {s,r, p}.
4.) FPA Anti-Unification is NP-complete and W[1]-hard w.r.t. parameter set {m, p,a}.

4.3 Interpretation of the Results

We want to provide some thoughts on the consequences of the complexity results
from the previous section, putting the obtained insights into a cognitive AI context
and thereby making the intrinsic connection between the formal considerations and
the analogy mechanism of the implemented system explicit.

We focus on a result directly affecting HDTP. The result showing that FP higher-
order anti-unification is W[1]-hard gives a hint at the difficulty introduced by the
operations admissible within the restricted higher-order anti-unification on the com-
plexity of the analogy-making process. Indeed, the only way that FP anti-unification
can restructure the order of the terms is by argument permutations, and our results
show that even allowing a single permutation is enough to imply computational
hardness. If we contrast this result against the polynomial-time algorithm for F anti-
unification, we have evidence that even a slight ability to restructure the input terms
makes higher-order anti-unification a difficult problem to solve.

Now, additionally making the (most likely reasonable) assumption that P 6= NP
(and FPT 6=W[1]) holds, the presented hardness results cast a shadow on the suit-
ability of the HDTP framework in its present state as basis for a general model for
high-level cognitive capacities or a general cognitive architecture. Still, it should
be noticed that the mere fact that HDTP in its present state is basically intractable
does not mean that future versions cannot be made tractable. Here, the insights ob-
tained from the formal analysis can serve as guidelines for the future evolution of

3 The corresponding proofs of the respective results can be found in Robere and Besold (2012).
Moreover, in the theorem statements W[1] refers to the class of problems solvable by constant
depth combinatorial circuits with at most 1 gate with unbounded fan-in on any path from an input
gate to an output gate. In parameterized complexity, the assumption W[1] 6= FPT can be seen as
analogous to P 6=NP.
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the system: In our opinion, one of the main questions for future theoretical research
in relation to HDTP will have to address the question of how HDTP’s version of
computing generalizations via restricted higher-order anti-unification can be further
constrained in a meaningful way as to obtain maximal expressivity and applica-
bility whilst still staying within the domain of polynomial solvability. Also, more
parametrized analysis will be needed, showing which are the factors that really im-
pact complexity, and which are aspects of a problem that are not really harmful.

5 Setting Limits to Heuristics in Cognitive Systems

Leaving the basic considerations and the application study of formal means of anal-
ysis of cognitive AI systems behind us we want to return to a more theoretical part
of our work. A still growing number of researchers in cognitive science and cog-
nitive psychology, starting in the 1970s with the “heuristics and biases” program
Kahneman et al (1982), and today prominently heralded, for instance, in the work
of Gigerenzer and colleagues Gigerenzer et al (2011), argues that humans in their
common sense reasoning do not apply any full-fledged form of logical or probabilis-
tic reasoning to possibly highly complex problems, but instead rely on mechanisms
— which are mostly automatic and unconcious — that allow them to circumvent
the impending complexity explosion and nonetheless reach acceptable solutions to
the original problems. Amongst the plethora of proclaimed automatisms are, for ex-
ample, the representativeness heuristic Kahneman et al (1982) or the take-the-best
heuristic Czerlinski et al (1999).

All of these mechanisms are commonly subsumed under the all-encompassing
general term “heuristics”. Still, on theoretical grounds, at least two quite different
general types of approach have to be distinguished within this category: Either the
complexity of solving a problem can be reduced by reducing the problem instance
under consideration to a simpler (but solution equivalent) one, or the problem in-
stance stays untouched but — instead of being perfectly (i.e., precisely) solved —
is dealt with in a good enough (i.e., approximate) way.

Now, taking the perspective of an architect of a cognitive system considering to
include human-inspired heuristics in his reasoning model for solving certain tasks,
a crucial question quite straightforwardly arises: Which problems can actually be
solved by applying heuristics — and how can the notion of heuristics be theoret-
ically modeled on a sufficiently high level as to allow for a general description?
Having a look at recent work in parameterized complexity theory and in hardness of
approximation, we find that the two distinct types of heuristics naturally correspond
to two well-known concepts from the respective fields. As firstly shown in Besold
(2013) and reproduced in the following, this opens the way for establishing a solid
theoretical basis for models of heuristics in cognitive systems.
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5.1 The Reduction Perspective

In Sect. 3, the Tractable AGI thesis demanded for models of cognitive capacities in
AI to be in FPT. However, there is also a non-trivial corollary that can be derived
from this property: any instance of a problem in FPT can be reduced to a problem
kernel.

Definition 3. Kernelization
Let P be a parameterized problem. A kernelization of P is an algorithm which takes an instance
x of P with parameter κ and maps it in polynomial time to an instance y such that x ∈ P if and
only if y ∈ P, and the size of y is bounded by f (κ) ( f a computable function).

Theorem 2. Kernelizability Downey et al (1997)
A problem P is in FPT if and only if it is kernelizable.

This theorem on the one hand entails that any positive FPT result obtainable
for the model in question essentially implies that there is a “downward reduction”
for the underlying problem to some sort of smaller or less-complex instance of the
same problem, which can then be solved — whilst on the other hand (assuming
W[1] 6= FPT) any negative result implies that there is no such downward reduction.
This equivalence forms a first connecting point to some of the different heuristics
frameworks in cognitive science and cognitive psychology — and can also have
important ramifications for the modeling of many cognitive capacities in computa-
tional cognitive systems.

On the one hand, from a constructive perspective, by actively considering the
kernelizability of problems (or rather problem classes), we can provide inspiration
and first hints at hypothesizing a specialized cognitive structure capable of com-
puting the reduced instance of a problem, which then might allow for an efficient
solving procedure. On the other hand, taking a more theoretical stance, by catego-
rizing problems according to kernelizability (or their lack thereof) we also can es-
tablish a distinction between problem classes which are solvable by reduction-based
heuristics and those which are not — and can thus already a priori decide whether
a system implementing a reduction-based heuristics might generally be unable to
solve a certain problem class.

From theoretical perspective the strict equivalence between FPT-membership
and kernelizability of a problem is somewhat surprising. However, on practical and
applied grounds, the correspondence should seem natural and, moreover, should
fairly directly explicate the connection to the notion of reduction-based heuristics:
If cognitive heuristics are as fast and frugal as commonly claimed, considering them
anything but (at worst) polynomial-time bounded processes seems questionable.
But now, if the reduced problem shall be solvable under resource-critical condi-
tions, using the line of argument from Sect. 2 and 3, we can just hope for it to be
in FPT. Now, combining the FPT-membership of the reduced problem with the
polynomial-time complexity of the heuristics, already the original problem had to
be fixed-parameter tractable. Still, reduction-based heuristics are not trivialized by
this: Although original and reduced problem are in FPT, the respective size of the
parameters may still differ between instances (which possibly can make an impor-
tant difference in application scenarios for implemented cognitive systems).
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5.2 The Approximation Perspective

There is also a complementary perspective offering an alternate possibility of
(re)interpreting heuristics, namely the theory of approximation algorithms: Instead
of precisely solving a kernel as proposed by reduction-based heuristics, compute an
approximate solution to the original problem (i.e., the solution to a relaxed prob-
lem). The idea is not any more to perfectly solve the problem (or an equivalent
instance of the same class), but to instead solve the problem to some “satisfactory
degree”.

Here, a candidate lending itself for being considered a standard analogous to FPT
in the Tractable AGI thesis is APX, the class of problems allowing polynomial-time
approximation algorithms:

Definition 4. APX
An optimization problem P is in APX if P admits a constant-factor approximation algorithm,
i.e., there is a constant factor ε > 0 and an algorithm which takes an instance of P of size n
and, in time polynomial in n, produces a solution that is within a factor 1+ε of being optimal
(or 1− ε for maximization problems).

Clearly, here the meaningfulness and usefulness of the theoretical notion in prac-
tice crucially depends on the choice of the bounding constant for the approximation
ratio: If the former is meaningfully chosen with respect to the problem at hand,
constant-factor approximation allows for quantifying the “good enough” aspect of
the problem solution and, thus, offers a straightforward way of modeling the notion
of “satisficing” Simon (1956) (which in turn is central to many heuristics considered
in cognitive science and psychology).

One should also be careful to note that ”constant-factor approximation” is also
quite unrestrictive in ways other than pure tractability. While this class captures
problems that may have efficient algorithms which produce an solution that is, say,
half as good as an optimal solution, it also contains problems that have efficient
1/1000-approximations, or 1/1000000. While these approximation factors almost
never appear in practice, they are theoretically allowed. However, we believe in prin-
cipal that this serves to strengthen any negative results which would place problems
outside of APX.

As in the case of the reduction-based heuristics, one of the main advantages of
formally identifying approximation-based heuristics with APX lies in its limiting
power: If a problem shall be solved at least within a certain range from the optimal
solution, but it turns out that the problem does not admit constant-factor approxi-
mation for the corresponding approximation parameter, the problem can a priori be
discarded as unsolvable with approximation-based heuristics (unless one wants to
also admit exponential-time mechanisms, which might be useful in selected cases
but for simple complexity considerations does not seem to be feasible as a general
approach).4

4 On the other hand, considering more restrictive notions than APX as, for instance, PTAS (the
class of problems for which there exists a polynomial-time approximation scheme, i.e., an algo-
rithm which takes an instance of a optimization problem and a parameter ε > 0 and, in polynomial
time, solves the problem within a factor 1+ε of the optimal solution) does not seem meaningful to
us either, as also human satisficing does not approximate optimal solutions up to an arbitrary degree
but in experiments normally yields rather clearly defined cut-off points at a certain approximation
level.
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5.3 Joining Perspectives

Having introduced the distinction between reduction-based and approximation-
based heuristics, together with proposals for a formal model of the mechanisms
behind the respective class, we now want to return to a more high-level view and
look at heuristics in their entirety. This is also meaningful from the perspective of
the initially mentioned system architect: Instead of deciding whether he wants to
solve a certain type of task applying one of the two types of heuristics and then con-
ducting the corresponding analysis, he might just want to directly check whether the
problem at hand might be solvable by any of the two paradigms. Luckily, a fairly re-
cently introduced theoretical concept allows for the integration of the two different
views — FPT and APX can both be combined via the concept of fixed-parameter
approximabiltiy and the corresponding problem class FPA:

Definition 5. FPA
The fixed-parameter version P of a minimization problem is in FPA if — for a recursive
function f , a constant k, and some fixed recursive function g — there exists an algorithm
such that for any given problem instance I with parameter k, and question OPT (I) ≤ k, the
algorithm which runs in O( f (k)nc) (where n = |I|) either outputs “no” or produces a solution
of cost at most g(k).

As shown in Cai and Huang (2006), both polynomial-time approximability and
fixed-parameter tractability with witness (see Cai and Chen (1997) for details) in-
dependently imply the more general fixed-parameter approximability. And also on
interpretation level FPA artlessly combines both views of heuristics, at a time in
its approximability character accommodating for the notion of satisficing and in its
fixed-parameter character accounting for the possibility of complexity reduction by
kernelizing whilst keeping key parameters of the problem fixed.

Clearly, the notion of fixed-parameter approximability is significantly weaker
than either FPT and kernelization, or APX. Nonetheless, its two main advantages
are the all-encompassing generality (independent of the type of heuristics) and yet
again the introduction of a categorization over problem types: If problems of a cer-
tain kind are not in FPA, this also excludes membership in any of the two stricter
classes — and thus (in accordance with the lines of argument given above) in con-
sequence hinders solvability by either type of heuristics.

Recalling the Tractable AGI thesis introduced in Sect. 3, we can use the just out-
lined conception of FPA for not only considering classical strict processing and
reasoning in cognitive systems, but for also accounting for models of cognitive
heuristics. This allows us to adapt the original thesis into a (significantly weaker
but possibly more “cognitively adequate”) second form:

Fixed-Parameter Approximable AGI thesis
Models of cognitive capacities in artificial intelligence and computational cog-
nitive systems have to be fixed-parameter approximable for one or more input
parameters that are small in practice (i.e., have to be in FPA).

Whilst the original Tractable AGI thesis was aimed at AI in general (thus also
including forms of high-level AI which may not be human-inspired, or which in
their results shall not appear human-like), the just postulated thesis, due to its strong
rooting in the (re)implementation of human-style processing, explicitly targets re-
searchers in cognitive systems and cognitive AI.
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6 The Importance of Formal Analysis for Cognitive Systems
Research Revisited

An often heard fundamental criticism of trying to apply methods from complexity
theory and formal computational analysis to cognitive systems and cognitive mod-
els are variations of the claim that there is no reason to characterize human behavior
in terms of some “problem” (i.e., in terms of a well-defined class of computational
tasks), from this drawing the conclusion that computational complexity is just irrel-
evant for the respective topics and fields.5 In most cases, this judgement seems to be
based on either a misconception of what a computational-level theory in the sense
of Marr (1982) is (which we will refer to as “description error”), or a misunder-
standing of what kind of claim complexity theory makes on this type of theory (in
the following referred to as “interpretation error”).

The description error basically questions the possibility of describing human be-
havior in terms of classes of computational tasks. The corresponding argument is
mostly based on the perceived enormous differences between distinct manifesta-
tions of one and the same cognitive capacity already within a single subject (at the
moment for descriptive simplicity’s sake — without loss of generality — leaving
aside the seemingly even more hopeless case of several subjects). Still, precisely
here Marr’s Tri-Level Hypothesis (i.e., the idea that information processing systems
should be analyzed and understood at three different — though interlinked — lev-
els) comes into play. Marr proposed three levels of description for a (biological)
cognitive system, namely a computational, an algorithmic, and an implementation
level. Whilst the latter two are concerned with how a system does what it does from
a procedural and representational perspective (algorithmic level), and how a system
is physically realized (implementation level), the computational level takes the most
abstract point of view in asking for a description of what the system does in terms
of giving a function mapping certain inputs on corresponding outputs. So what is
needed to specify a computational-level theory of a cognitive capacity6 is just a
specified set of inputs, a set of corresponding outputs (each output corresponding
to at least one element from the set of inputs) and a function establishing the con-
nection between both (i.e., mapping each input onto an output). But now, due to
the high degree of abstraction of the descriptive level, this allows us to character-
ize human cognitive capacities in general in terms of a computational-level theory
by specifying the aforementioned three elements — where inputs and outputs are
normally provided (and thus defined) by generalization from the real world environ-
ment, and the function has to be hypothesized by the respective researcher. 7 Once

5 For reasons unclear to the authors this perspective seems to be more widespread and far deeper
rooted in AI and cognitive systems research than in (theoretical) cognitive science and cognitive
modeling where complexity analysis and formal computational analysis in general by now have
gained a solid foothold.
6 Here we presuppose that cognitive capacities can be seen as information processing systems.
Still, this seems to be a fairly unproblematic claim, as it simply aligns cognitive processes with
computations processing incoming information (e.g., from sensory input) and resulting in a certain
output (e.g., a certain behavioral or mental reaction) dependent on the input.
7 Fortunately, this way of conceptualizing a cognitive capacity naturally links to research in artifi-
cial cognitive systems. When trying to build a system modeling one or several selected cognitive
capacities, we consider a general set of inputs (namely all scenarios in which a manifestation of the
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all three parts have been defined, formal computational analyses can directly be con-
ducted on the obtained computational-level theory as the latter happens to coincide
in form with the type of problem (i.e., formal definition of a class of computational
tasks) studied in computational complexity and approximation theory. And also the
existence of at least one computational-level theory for each cognitive capacity is
guaranteed: Simply take the sets of possible inputs and corresponding outputs, and
define the mapping function element-wise on pairs of elements from the input and
output, basically creating a lookup table returning for each possible input the re-
spective output.

Leaving the description error behind us, we want to have a look at the inter-
pretation error as further common misconception. Even when modifying the initial
criticism by not questioning the overall possibility of characterizing human behav-
ior in terms of classes of computational tasks, but rather by stating that even if
there were these classes, it would not have to be the case that humans have to be
able to solve all instances of a problem within a particular class, we believe that
this argument is missing the point. First and foremost, as further elaborated upon
in the initial paragraph of the following section, we propose to use complexity and
(in)-approximability results rather as a safeguard and guideline than as an absolute
exclusion criterion: As long as a computational-level theory underlying a computa-
tional cognitive model is in FPT, APX, or FPA — where in each case the system
architect has to decide which standard(s) to use — the modeler can be sure that his
model will do well in terms of performance for whatever instance of the problem
it will encounter.8 Furthermore, it is clear that in cognitive systems and cognitive
models in general a worst-case complexity or approximability analysis for a cer-
tain problem class only rarely (if at all) can be taken as an absolute disqualifier for
the corresponding computational-level theory.9 It might well be the case that the
majority of problem instances within the respective class is found to be well behav-
ing and easily solvable, whilst the number of worst-case instances is very limited
(and thus possibly unlikely to be encountered on a basis frequent enough as to turn
their occurrence into a problem). However, at a high level, complexity theory can
still provided researchers with meaningful information — given a computational

cognitive capacity can occur) which we necessarily formally characterize — although maybe only
implicitly — in order to make the input parsable for the system, hypothesize a function mapping
inputs onto outputs (namely the computations we have the system apply to the inputs) and finally
obtain a well-characterized set of outputs (namely all the outputs our system can produce given its
programming and the set of inputs).
8 In discussions with researchers working in AI and cognitive systems very occasionally critical
feedback relating to the choice of FPT, APX, and FPA as reference classes has been given, as
these have (curiously enough) been perceived as too less restrictive. Harshly contrasting with the
previously discussed criticism it was argued that human-level cognitive processing should be of
linear complexity or less. Still, we do not see a problem here: Neither are we fundamentalist about
this precise choice of upper boundaries, nor do we claim that these are the only meaningfully
applicable ones. Nonetheless, we decided for them because they can quite straightforwardly be
justified and are backed up by close correspondences with other relevant notions from theoretical
and practical studies in cognitive science and AI.
9 Of course this also explicitly includes the case in which the considered classes are conceptu-
ally not restricted to the rather coarse-grained hierarchy used in “traditional” complexity theory,
but if also the significantly finer and more subtle possibilities of class definition and differentia-
tion introduced by parametrized complexity theory and other recent developments are taken into
account.
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intractability or inapproximability result the researcher has an opportunity to refo-
cus their energies onto algorithms or analysis which are more likely to be fruitful.
Moreover, in the process of the formal analysis, the researcher now becomes more
intimately familiar with the problem at hand — which parameters of the problem
are responsible for a ”complexity explosion”, which paramaters can be allowed to
grow in an unbounded fashion and still maintain computational efficiency. And, of
course, if one is still put off by this sort of complexity analysis, it may simply be a
matter of changing the particular analysis type: Where worst-case analyses may on
certain grounds be questionable as decisive criterion about the overall usefulness of
a particular computational-level theory for a cognitive capacity, average-case anal-
yses (which admittedly are significantly harder to perform) can change the picture
dramatically.

7 Conclusion: Limiting the Limits

A second frequent criticism (besides the popular general objection discussed in the
previous section) against the type of work presented in this paper is that demanding
for cognitive systems and models to work within certain complexity limits might
always be overly restrictive: Maybe each and every human mental activity actually
is performed as an exponential-time procedure, but this is never noticed as the ex-
ponent for some reason always stays very small. Undoubtedly, using what we just
presented, we cannot exclude this possibility — but this also is not our current aim.
What we want to say is different: We do not claim that cognitive processes are
without exception within FPT, APX, or FPA, but we maintain that as long as cog-
nitive systems and models stay within these boundaries they can safely be assumed
to be plausible candidates for application in a resource-bounded general-purpose
cognitive agent (guaranteeing a high degree of generalizability, scalability, and reli-
ability). Thus, if a system architect has good reasons for plausibly assuming that a
particular type of problem in all relevant cases only appears with a small exponent
for a certain exponential-time solving algorithm, it may be reasonable to just use
this particular algorithm in the system. But if the architect should wonder whether a
problem class is likely to be solvable by a resource-bounded human-style system in
general, or if it should better be addressed using reduction-based or approximation-
based heuristics, then we highly recommend to consider the lines of argument pre-
sented in the previous sections.

Concerning related work, besides the conceptually and methodologically closely
related, but in its focus different efforts by van Rooij van Rooij (2008) and col-
leagues in theoretical cognitive science (see, e.g., Kwisthout and van Rooij (2012);
Blokpoel et al (2011)), of course there also is work relating fixed-parameter com-
plexity to AI. Still, except for very few examples as, e.g., Wareham et al (2011), the
applications mostly are limited to more technical or theoretical subfields of artificial
intelligence (see, e.g., Gottlob and Szeider (2008) for a partial survey) and — to
the best of our knowledge — this far have not been converted into a more general
guiding programmatic framework for research into human-level AI and cognitive
systems. To a certain extent, a laudable exception to this observation may be found
in Chapman (1987), where the author presents a high-level algorithm for general
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purpose planning and — using formal methods similar to the ones considered above
— derives general constraints for domain-independent planning under certain as-
sumptions on the expressivity of the action representations, together with ways of
avoiding the found limitations.

We therefore in our future work hope to develop the overall framework further,
also showing the usefulness and applicability of the proposed methods in differ-
ent worked examples from several relevant fields: The range of eligible application
scenarios spans from models of epistemic reasoning and interaction, over cognitive
systems in general problem-solving scenarios, down to models for particular cogni-
tive capacities as, for example, analogy-making (see, e.g., Sect. 4 and additionally
Besold and Robere (2013b) for a proof of concept).

References

Besold TR (2013) Formal Limits to Heuristics in Cognitive Systems. In: Proceedings of the Second
Annual Conference on Advances in Cognitive Systems (ACS) 2013

Besold TR, Robere R (2013a) A Note on Tractability and Artificial Intelligence. In: Kühnberger
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Towards Formally Well-Founded Heuristics in Cognitive AI
Systems (T. R. Besold)

Abstract:

We report on work towards the development of a framework for the application of formal
methods of analysis to cognitive systems and computational models (putting special
emphasis on aspects concerning the notion of heuristics in cognitive AI) and explain why
this requires the development of novel theoretical methods and tools..
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Chapter 8

Human-Level Artificial Intelligence Must be a Science (T. R.
Besold)

Abstract:

Human-level artificial intelligence (HAI) surely is a special research endeavor in more than
one way: The very nature of intelligence is in the first place not entirely clear, there are
no criteria commonly agreed upon necessary or sufficient for the ascription of intelligence
other than similarity to human performance, there is a lack of clarity concerning how to
properly investigate artificial intelligence and how to proceed after the very first steps of
implementing an artificially intelligent system, etc. These and similar observations have
led some researchers to claim that HAI might not be a science in the normal sense and
would require a different approach. Taking a recently published paper by Cassimatis as
starting point, I oppose this view, giving arguments why HAI should (and even has to)
conform to normal scientific standards and methods, using the approach of psychometric
artificial intelligence as one of the main foundations of my position.
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A Note on Chances and Limitations of Psychometric AI (T.
R. Besold)

Abstract:

Human-level artificial intelligence (HAI) surely is a special research endeavor in more
than one way: In the first place, the very nature of intelligence is not entirely clear;
there are no criteria commonly agreed upon necessary or sufficient for the ascription of
intelligence other than similarity to human performance (and even this criterion is open
for a plethora of possible interpretations); there is a lack of clarity concerning how to
properly investigate HAI and how to proceed after the very first steps of implementing
an HAI system; etc. In this note I assess the ways in which the approach of Psychometric
Artificial Intelligence can (and cannot) be taken as a foundation for a scientific approach
to HAI.
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Turing Revisited: A Cognitively-Inspired Decomposition (T.
R. Besold)

Abstract:

After a short assessment of the idea behind the Turing Test, its actual status and the
overall role it played within AI, I propose a computational cognitive modeling-inspired
decomposition of the Turing test as classical “strong AI benchmark” into at least four
intermediary testing scenarios: a test for natural language understanding, an evaluation
of the performance in emulating human-style rationality, an assessment of creativity-
related capacities, and a measure of performance on natural language production of an
AI system. I also shortly reflect on advantages and disadvantages of the approach, and
conclude with some hints and proposals for further work on the topic.
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