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Abstract

In the recent decades, alternative notions regarding the role of symbols in
intelligence in natural and artificial systems have attracted significant inter-
est. The main difference of the so-called situated and embodied approaches to
cognitive science from the traditional cognitivist position is that symbolic repre-
sentations are viewed as resources, similar to maps used for navigation or plans
for activity, instead of as transparent stand-ins in internal world models. Thus,
all symbolic resources have to be interpreted and re-contextualized for use in
concrete situations. In this view, one of the primary sources of such symbolic
resources is language. Cognitivism views language as a vessel carrying informa-
tion originally located in the processing mechanisms of the individual agents.
Situated approaches, on the other hand, view language both as a communicative
mechanism and as a means for the individual agents to enhance and extend their
cognitive machinery, by e.g. better utilizing their attentional resources, or mod-
ifying their perceptual-motor means. Taking inspiration from these ideas, and
building on multi-agent models developed in other fields, the field of language
evolution developed models of the emergence of shared resources for communi-
cation in a community of agents. In these models, agents with various means
of categorization and learning engage in communicative interactions with each
other, using shared signs to refer either to pre-given meanings or entities in a
situation. In order to avoid falling into the same mentalist pitfalls as cognitivism
in the design of these models, such as the stipulation of an inner sphere of mean-
ings for which communicative signs are mere labels, the role of communication
should be viewed as one of the social coordination of behavior using physically
grounded symbols. To this end, an experimental setup for language games, and
a robotic model for agents which engage in such games are presented. The
setup allows the agents to utilize shared symbols in the completion of a simple
task, with one agent instructing another on which action to undertake. The
symbols used by agents in the language games are grounded in the embodied
choices presented to them by their environment, and the agents can further use
the symbols created in these games for enhancing their own behavioral means.
The learning mechanism of the agents is similarity-based, and uses low-level
sensory data to avoid the building in of features. Experiments have shown that
the establishment of a common vocabulary of labels depends on how well the
instructors are trained on the task and the availability of feedback mechanisms
for the exchanged labels.
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Granowsky, Merle-Marie Schäffer and Ela Warnecke for their friendship and in-
credible understanding of my neglect of domestic duties. Finally, I would like to
thank Josh Homme for the great music that accompanied me through the years
working on this dissertation.

1
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Chapter 1

Introduction

A major topic in cognitive science is to what extent intelligent behavior stems
from the processing of symbolic representations. How such representations are
created, stored, processed and communicated has been a central subject in many
fields and research programs; arguably, it has been the center of research in ar-
tificial intelligence (AI). The dominant approach in cognitive science regarding
this topic, at least until the end of the last decade, has been the representation-
alist one, which relied on the use of parallels between folk psychological terms
and language used to talk about behavior to attribute belief states to intelligent
beings, and then build artificial agents which use such states in order to create
models of a domain, reason in this domain, and carry out actions according to
their goals and intentions. The claim that the disembodied and detached pro-
cessing of such states amounts to genuine intelligence has been made possible
by the availability of technical means to realize mechanising discourse and the
theoretical tools that were inherited from fields allowing such discourse. One
of these tools was the theoretical background for representational mechanisms,
which claimed a primary role for mental representations in accessing the world
in which intelligent agents live in. This background served as a viable tool for
creating an inner arena of cognition in which such models could be created and
mental phenomena could be studied independently of the real world.

The work presented here follows an alternative paradigm which relies on a
fundamentally different understanding of meaningful interaction, and derives
its sources from research in robotics, artificial life and various philosophical
approaches to cognition. This alternative paradigm is known as situated-
embodied cognitive science, and it aims to understand intelligent beings as
socially and physically situated agents tightly coupled to their environment.
In this view, symbol use is associated primarily with communicative phenom-
ena, and methodological parsimony is seen as an important principle to avoid
unnecessary intellectualizing of behavioral capabilities. When these views are
combined, it can be concluded that the interaction of agents in communica-
tive tasks should become the main topic of study if the dynamics of symbol
use has to be studied. This conclusion is also bolstered by research in situated
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CHAPTER 1. INTRODUCTION 6

cognition, in which the interdependence of conceptualization, perception and
communication are studied in various social contexts.

The approach presented here is also a synthetic one. A computational model
of pre-linguistic symbolic reference will be presented, and the relevant issues will
be discussed on this model. Synthetic modelling is one of the distinctive aspects
of cognitive science, in that computational implementations are regarded as a
measure of realism and a significant means for progress, because the work put
into building concrete applications leads to new ideas, predictions and ques-
tions. The model presented derives its inspiration from psychological work on
categorization, and recent debates in similarity-based methods in psychology.

In this introductory chapter, the issues which will be discussed in more
depth will be introduced. The role of representations, and their explanatory use
will be discussed, coupled with an overview of theories of the role of symbolic
representations and language in cognition. In addition, some of the driving
concerns and methodological commitments will be presented. An overview of
the following chapters will be given for orientation.

1.1 Cognitive Science and Meaning

There is a clear consensus on the development of the cognitive revolution in
psychology and related sciences. The cognitive revolution involved the change
of status of theoretical mechanisms which were postulated as a part of the-
ories about the psychological processing carried out in animals and humans.
Such mechanisms (or at least singular constructs) were already proposed by be-
haviorists, but what differentiated cognitive psychology was that the postulated
internal mechanisms had “surplus meaning” (Greenwood, 1999). Surplus mean-
ing refers to the ability of theories to generate substantive explanations and lead
to further development, due to their metaphoric connections; an example is the
planetary model of the atom by Niels Bohr. In the case of the cognitive revolu-
tion, the computer metaphor allowed the construction of theories which could
claim the existence of internal processing mechanisms, as long as these mecha-
nisms could be realized on computing machinery. According to Fodor (1994),
such a cognitive theory can be defined as any theory that postulates represen-
tational states that are semantically evaluable and rules, heuristics or schemata
governing the operation of such representational states. A quasi-linguistic rep-
resentational system and a simple theory of correspondence between represen-
tations and their references was the most prominent feature of early cognitive
science. In this paradigm, representations were processed according to their
form in a truth-preserving way that would mirror their content.

As these observations make clear, cognitive science was based on the use
of formal languages to describe systems, and the embodiment of the resulting
formal systems on computing machinery. The idea that thinking is compu-
tation, or more generally the processing of a calculus of mind, is rather old.
Hobbes, for example, claimed that “reasoning is but reckoning” (Haugeland,
1981b). Leibniz, who found natural language too vague, wanted to combine
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a “Lingua Universalis” with a “Calculus Ratiocinator”, which would together
reduce reasoning to arithmetic calculation (Davis, 2000). Cognitive science can
be seen as the heir to this school of rationalist thinking, taking its modern form
in the use of computers as experimental media as well as discursive resources for
generating and presenting new ideas. Modern computers present the ability to
automatically process formal structures; they are interpreted automatic formal
systems (Haugeland, 1985, p.47). They can carry out exhaustively specified
operations, i.e. algorithms, on information given in terms of formal represen-
tations. When these algorithms are specified so that they preserve truth in a
certain domain, that is, the specification of the symbols fed to the algorithm
concurs with the interpretation of the output symbols, the system can be used
for a certain task, as e.g. a chess playing program, or a logic reasoner.

The crux of the discussion surrounding whether this kind of processing,
the fundamental mode of traditional AI systems, is sufficient for an exhaus-
tive theory of human intelligence, and whether scientific theories relying on the
abstraction of algorithmic processing of symbolic structures are sufficient for un-
derstanding the human mind, is the status of these symbols as meaningful units.
More precisely, the question that has to be answered is whether the meanings of
the representations which comprise the structures processed by computers are
parasitic on the interpretations of the humans that design and interpret them,
or whether they are, due to the role they serve in the whole system, genuinely
meaningful, thereby granting the programs which process them the status of
intelligent systems. The traditional approach in cognitive science has been to
opt for the second answer, which states that, despite the simplicity of our en-
gineered systems, these symbols are meaningful to the extent that the symbol
processing systems approach realistic human behavior.

The duty of the cognitive scientist is thus to analyze human behavior, locate
systematicities, decode these into algorithmic procedures, and build systems
which embody these procedures, at the same time producing testable hypothesis
and further phenomena to be studied. The data generated, and what has been
discovered in the design of the algorithms, are a coupling possible only through
the combination of analytic and synthetic methods offered by cognitive science.
The result of this approach has been models which duplicate the world in an
inner arena in order to create formal representations on which the reasoning
mechanisms can function. This gesture of internalization, of positing maps
and models in the head, led to cognitive science having a certain character,
and determined what was treated as a subject worthy of studying, and how the
fundamental human capacities were formulated as research questions. Cognitive
science, and especially AI concentrated on those tasks which have an abstract
character, and whose inputs and outputs can be characterized in terms of formal-
representational structures; early examples for such tasks are game playing,
text comprehension and automatic translation. Domains which did not fit this
mould, such as perceptual and motor tasks, were stated in terms that would
extend this framework, delegating to perception the role of creating a description
of the environment in symbolic terms, and to motor mechanisms the role of the
execution of centrally-created plans. The traditional position which is a result
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of this constitutive role of representational mechanisms and symbol processing
is called cognitivism.

Efforts to integrate research into various modules and capacities in the cogni-
tivist paradigm into complete agents, especially ones with robotic capabilities,
showed that the sum of many specialized modules does not necessarily equal
complete intelligence. Decades of research both into the specialized problems of
AI and more general issues have demonstrated that the dream of full-fledged AI
is more distant than initially presumed. A number of problems have cropped
up repeatedly, resisting all hand waving and simplistic solutions. Among these
problems are the common sense problem, which concerns the representation
of the simplest pieces of knowledge needed for basic reasoning (e.g. “If a man
takes a shower, his foot gets wet”) and the relevance problem, which concerns
how the discovery of which pieces of information are relevant in coping with a
certain situation gets computationally intractable as the knowledge base of an
agent grows. These problems have led some to speculate that they might be
symptoms of a deeper issue, namely the reliance on internal representations,
and more generally, the postulation of an inner space of reasoning and repre-
sentation. What has to be done to advance AI research is therefore to go back
to fundamentals, both at the level of perception and action, and at the level of
symbolic capabilities for mental reasoning, and look at how people, animals and
artificial agents use their resources in concrete situations, reinterpreting what
they have previously learned and categorizing situations in particular ways. This
approach, called situated cognition, rejects the notion that the symbols used in
traditional AI programs are intrinsically meaningful just by fiat of their having
been designed for a certain task and conforming to the initial interpretation, and
argues that the problems faced by AI are repercussions of the strict reliance of
cognitive science and AI on symbolic representations, without sufficient concern
about how such representations are created and their meaning maintained by
the community which uses them.

It is nevertheless obvious that human beings make use of symbolic repre-
sentations, and many complex capabilities are a result of the ability to use
such representations to coordinate behavior individually and socially, that is,
conforming to the standards of a community of agents. The evolutionary and
phylogenetic roots of this capacity, as well as the computational capabilities nec-
essary for it, are subjects of intensive research in many different fields. One of
these fields is the synthetic modelling of multi-agent communities which engage
in communicative behavior, creating a self-organizing dynamics through which
a shared lexicon arises. The theoretical background for this work derives from
the situated cognition literature, where it is claimed that the primary source
of symbols in intelligence is public symbol use for communicative purposes,
which culminates in language in humans. In order to understand how a socially
constructed vocabulary of symbols can be maintained through communicative
inter-agent interaction, symbol use can arise in a society, and thereby endow the
individual agents with symbolic capacities for activities other than communica-
tion, multi-agent models are constructed, and the emerging dynamics is studied
in the light of changing agent-level capabilities.



CHAPTER 1. INTRODUCTION 9

However, certain tendencies from the mentalist paradigm are still present in
the work on dynamics of communication. An example for these tendencies is the
locating of original meaning in an entity in the internal processing mechanism,
and communication serving the purpose of creating correspondences between
labels and these internal meanings. As it will be argued in the next chapter,
locating an original meaning in internal representations in the head is a central
tenet of the representationalist approach, and leads to many technical difficulties
in AI, and philosophical problems in cognitive science in general. The work
presented here aims to build on work on the dynamics of communication, at
the same time integrating alternative philosophical theories of meaning and
symbol use. These theories view the fundamental significance of symbols in
their use for embodied action in shared situations, serving agents as resources
to organize their behavior in a socially coordinated way. More precisely, the aim
of this thesis is to situate the meaning of symbolic communication in concrete
task contexts.

1.2 Language and Cognition

Humans are the only living beings which can engage in complex and protracted
cognitive activities such as problem solving, planning, intentional deliberation
and social exchange of highly structured information, while at the same time dy-
namically modifying their behavior to suit radically changing situations. They
are also the only beings that can use context-free, productive and multi-modal
means of communication. This co-occurrence is the most simple reason to think
that there is a connection between human intelligence and the linguistic capac-
ity. The extent of this connection has been the subject of much debate, and
various positions have established themselves as the basis of different philosophi-
cal traditions and scientific research programs. In cognitive scientific terms, this
problem takes the form of the question “What is the role of language in cogni-
tion?”.

Language is one of the areas which lies at the foundation of cognitive science.
The cognitivist research program drew its most fundamental tenets from the
work of Chomsky and fellow linguists, who claimed an innate language faculty,
a language “organ” responsible for the acquisition and processing of language
(Chomsky, 1988). This claim for the division of mental capacities into various
units and furthermore the assertion of a knowledge of language, instantiated
as rules in the human cognitive apparatus, became a fundament for the rest
of cognitive science. The role of language inherent in this paradigm is one of
language as primarily a communicative tool, serving as a vessel for the structures
human beings have in their minds in ‘mentalese’ and want to transmit to others
(cf. Carruthers, 2008). The fundamental units of meaning are therefore the
representations which words are overt forms of. In AI, this approach has taken
the form of language understanding as encoding and decoding of linguistic signs
to internal structures. This position is called the communicative conception of
language, since it describes language as a vessel for meaning originally located
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in the head (Carruthers and Boucher, 1998).
In the psychology literature, there is considerable proof pointing to the cog-

nitive use of language. It has been shown, for example, that young children
working on a task made more self-directed verbalization when the task was
more complicated (Berk and Garvin, 1984). Furthermore, the children who
made more verbalizations were more successful. An interesting experimental
study of the use of linguistic cues involves navigation in a maze. It has been
shown that rats use only geometric information when they have to reorient in
a closed area, ignoring other cues such as colors or scent (Cheng, 1986). Reori-
entation refers here to the rats being put in an area, allowed to discover it, and
then taken away, spun around and placed back in the area, so that they have
to find their way again. In experiments with children and adults using a similar
setup, it was found out that children between 18 and 24 months also relied solely
on geometric cues. When a toy was hidden behind a corner of a rectangular
area, children looked at all corners of a room with equal probability searching for
a toy, although one of the walls had a stark color, serving as a cue for the corner
to look for. As can be predicted, adults used this cue for reorientation (Hermer
and Spelke, 1996). This, on itself, does not prove anything about language use
in spatial orientation. However, two experimental studies suggest that linguis-
tic capabilities are crucial in such a reorientation task. The first comes from
Hermer-Vazquez et al. (1999), who have shown that when adults, who normally
use non-geometric information when they have to reorient, also default to solely
using geometric cues when they are engaged in verbal shadowing of continu-
ous speech. Furthermore, this effect was removed when this shadowing was a
continuous rhythm, “suggesting that the interference effect [. . . ] did not stem
from general limits on working memory or attention but from processes more
specific to language” (Hermer-Vazquez et al., 1999, p.3). Also, Shusterman and
Spelke (2005) have shown that simply training children to use the words “left”
and “right” correctly has a marked impact on their success in the disorientation
task. These experimental results point to a significant role of the individual’s
use of her linguistic capacities outside of a communicative context in spatial
orientation. The position on the cognitive status of language and symbolic
capacities which derives from such results, and claims a more central role for
these capacities, is called the cognitive conception of language (Carruthers and
Boucher, 1998).

Another interesting study which demonstrates the role of symbolic capaci-
ties in intelligent behavior was carried out by Thompson et al. (1997). In earlier
studies, chimpanzees with and without language training were tested in what
is called a conceptual matching-to-sample task (Premack, 1986). In this task,
the subjects are asked to match the relations between the objects in two sets.
When they are presented the sample AA (e.g. a pair of physically identical
cups), the subjects have to pick EE (e.g. identical pair of shoes) as analogous to
the sample. Since the relationships of two pairs of objects have to be matched
to each other, the matching of physical relationships is not enough for success-
ful performance; what is necessary is the matching of two abstract relations.
Premack (1986) had shown that chimpanzees with language training performed
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better than those without any language training. The research question posed
by Thompson et al. (1997) was what aspects of language training were responsi-
ble for the improvement. They found out that the best-performing chimpanzees
among their subjects were the ones that were trained in labeling of relations
and referents with tokens; they had been trained to match numeric displays
of objects with Arabic numerals (e.g. 3 for XXX and XXX for 3) and labeling
pairs of objects as being either the same or different (“If identity, choose heart”
or “If non-identity, choose diagonal”). The authors conclude that “experience
with symbolic tokens per se produces a system for universal computation in the
chimpanzee, as it also does for the human child, if not other species” (p. 42).
Another interesting effect was observed in an experiment which involved two
chimpanzees in a task with a reversed reinforcement contingency. The chim-
panzees were presented with two bowls of candy. One of the chimpanzees had
to make a choice by pointing at one of the bowls, after which he received the
other bowl, whereas the bowl it pointed at was given to the other chimpanzee.
Even after hundreds of training trials, the chimpanzees were unable to point
at the bowl with the lower number of candies; they were not able to inhibit
their direct response to the bowl with more candies (Boysen et al., 1996). In a
modification to the task, the bowls were replaced with Arabic numerals show-
ing the number of candies in the bowls. When one of the chimpanzees which
had earlier been trained with using Arabic numerals as quantity symbols was
tested in this modified task, it was immediately able to invoke the optimal food-
sharing rules: “As long as Arabic numerals served as stimuli, Sheba consistently
selected the smaller numeral and earned the greater number of candies. When
candies were reintroduced as stimuli, her performance immediately deteriorated
but returned to more optimal levels when Arabic numerals were again substi-
tuted for the candy array stimuli” (Boysen et al., 1996, p.77). The results of
this experiment show that external symbols can be useful in inhibiting direct
response to attractive stimuli, in order to receive delayed but higher reward.

These and similar findings point to a more central role for language in intel-
ligent behavior. However, proposing a theory of the cognitive role of language
relying on the classical internalist picture, where the mind already has a lan-
guage of its own, is futile at best: any functional role attributed to a socially
acquired language will be a derivative of this internal language. Due to this
reason, recent theories on the cognitive function of language also envision an
alternative role for public language. An example is Clark (1998), who counts
six different functions language and symbols serve, other than communication.1

Among these roles are memory augmentation, environmental simplification and
attention allocation. Clark (1998) calls his approach the supra-communicative
view of language; this theory will be studied more in depth in Section 3.3.

Proposals like that of Clark (1998) show that it is possible to envision an
alternative role for language, making it possible to avoid the internalist tenden-
cies of the traditional paradigm, and at the same time laying the groundwork

1Another interesting example is Carruthers (1998), who gives language the role of unifying
the outputs of different modules in the mind.
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for a cognitive scientific theory of symbol use grounded in the social practices
in a community. The central aim of the work presented here is to build on this
and similar proposals and present a synthetic perspective into the role of prim-
itive communicative capacities in the social organization of embodied behavior
in communities of agents. The interaction of two dynamics will be studied in
a multi-agent model, with the aim of understanding the conditions necessary
for the emergence of a common vocabulary in a community of agents. These
dynamics are the bodily dynamics of the individual agents, and the multi-agent
dynamics of symbol use and referential behavior. The fundamental question to
be addressed is how a community of agents can devise ways to refer to choices
they have in the environment for embodied activity, without building in inter-
nal representations. Relying on situated approaches to the role of symbols and
language, the meaning of symbols in the absence of internal representations will
be located in the behavioral choices the agents have acquired in their previous
interaction with the environment. The situation in which the agents engage
in language games will present distinctions in which the symbols used in com-
munication can be grounded. Once such symbols are acquired by the agents,
their behavioral capabilities can be augmented for more complicated interaction,
which further transforms the situation as it is available to the agents.

It must be pointed out that the linguistic capacity of humans exhibits vari-
ous kinds of complexity at different levels, each of which is still a domain which
requires its own forms of understanding. Neither the work presented here, nor
other contributions in the field of language evolution and dynamics of commu-
nication, yet have any radically new ideas to offer when it comes to understand-
ing the whole complexity of language, with its complex syntactic structures
and inter-language variability coupled with universal constraints. Nevertheless,
it should be possible to look at linguistic communication not solely as trans-
formed mentalese, but as a tool that enhances other cognitive abilities. It is
further a good idea to start such an alternative understanding at the most basic
level of communication, at the level of single symbols. Therefore, even when
there is talk of language in the rest of this work, one should think of very simple
settings of primitive symbol use, comparable to the utilization of gestures, albeit
with a recognizable form, so that signs can be reused and learned.

1.3 Overview

In the next chapter, an overview of the main criticisms arrayed against cog-
nitivism will be presented. The main focus will be on AI, and the technical
problems faced by AI work. It will be argued that these technical problems
were symptoms of more deep-seated philosophical issues. The third chapter will
focus on the embodied and situated approaches to cognitive science. These ap-
proaches, after having appeared as a reaction to cognitivism, have established
themselves as independent research paradigms, and offer a range of alternative
tools, both theoretical and computational, to study human intelligence. After-
wards, in Chapter 4, recent work in the emergence of communication and the
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dynamics of symbolic communication will be given. This is a preliminary to
the main contribution discussed in this dissertation, a model of symbolic com-
munication and situated symbol use, presented in Chapter 5. In Chapter 6, a
discussion of the advantages and shortcomings of the model will be presented.
In the last chapter, a short overview will be given and conclusions will be drawn.



Chapter 2

Representationalism:
Cognitive and Philosophical
Issues

The situated approaches to cognition have established themselves as a paradigm
for cognitive science. They have developed tools and a research vocabulary for
all the relevant domains of cognition and scientific research on cognition. In the
early years of the search for an alternative to the representationalist method,
it was nearly an imperative to start a study in the situated-embodied tradi-
tion with a criticism of cognitivism. This is to be expected of a new scientific
paradigm, because every new effort and alternative paradigm starts as a re-
action and as an anti-stance (Kuhn, 1996). Cognitive science itself is a good
example, as it defined itself as an alternative to behaviorism, as a revolutionary
option.

It can nevertheless be claimed that cognitivism is a special case as far as
paradigms in the human sciences go. This specialty derives from two factors.
The first is the role of the received philosophical-theoretical background in the
formulation and popularity of cognitivism, in that cognitivism could rely on a
rich background of philosophy which had already worked out the fundamentals
of computational thinking. The second is the historical and social context in
which especially artificial intelligence established itself as not only a scientific
method, but as a design for the future. Due to these reasons, and as a necessary
way of highlighting the starting points and initial driving forces of research on
situated cognition, it is a good idea to remember the most important criticisms
directed at cognitivism. In addition, the philosophical and historical background
delivers a number of insights, not the least about the structure of the scientific
enterprise as a situated and historically shaped human endeavor.

In this chapter, first, a review of the scientific shortcomings of cognitivist
approaches to cognition will be given. These shortcomings were the primary rea-
son for the search for an alternative theoretical and experimental framework.

14
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Afterwards, the philosophical background which led to the acceptance of the
cognitivist approach will be discussed. Situated and embodied approaches to
cognition have derived their philosophical inspiration from a number of sources;
the two most important of these, Wittgenstein and the phenomenological tra-
dition, will be shortly discussed. The main features of and recent developments
in the situated-embodied program will be outlined in the next chapter.

2.1 Cognitivism in AI and Psychology

Cognitive science is built on the idea of operationalizing the human being, i.e.
making it amenable to scientific study, as an information processing system. The
forms of scientific explanation which information processing accounts enable are
different from those of the other sciences, which discover rule-based regularities.
According to Haugeland (1978), cognitive scientific explanation brings together
two forms of scientific explanation. The first of these is morphological expla-
nation, where “an ability is explained through appeal to a specified structure
and to specified abilities of whatever is so structured” (Haugeland, 1978). An
example is the organization of the DNA, where replication is a capability based
on the double-helix structure. The second kind of explanation is systematic
explanation, where, in addition to a morphological explanation, “organized co-
operative interaction” plays an important role. In such an explanation, a system
is broken down to its functional components, and their interactions make clear
“how it works”. The description of the inner workings of e.g. a radio would
be an example of such an explanation, but the system does not have to be
an engineered one; many biological explanations also rely on a similar idea of
systematicity.

In order to formulate an information processing account of a system, it has to
be described in terms of an intentional black box (IBB): the outputs of the sys-
tem have to make sense in terms of the inputs and a domain in which the system
is assumed to function (Haugeland, 1978). When we talk about a system as, for
example, playing chess, we use quasilinguistic descriptions in order to describe
what it is doing: the chess playing program gets out its queen, plays aggresively,
wants to capture a pawn etc. What now has to be done is to pick the outer-
most IBB apart, to arrive at functional components which in turn themselves
are IBBs. The components which are either stipulated (if an existing system is
being analyzed) or created (if a new system is being engineered) in this step are
again described in terms of the quasilinguistic description with which the system
itself was described in the first place. These component IBBs can themselves be
further deconstructed. This process of further decomposition grounds when an
element can be physically instantiated on a substrate, such as a logic gate on
silicon or a weighted connection on a synapse.1 The advantages of this kind of
scientific explanation compared either to behaviorism, which rejects ascriptions

1Dennett (1978) argues for a very similar perspective when he describes the work of cog-
nitive science as defining simpler and simpler homunculi, until these can be instantiated in
processing machinery.
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of meaningful internal states and intentions, or to introspection are obvious.
Cognitive science can now study mental phenomena and thereby speculate on
intervening processes and states between input and output. It can also do this
without fear of getting lost in speculation on private inner impressions, because
any speculation or stipulated process has to be “modelled”, i.e. instantiated as
an algorithm, or shown to be implementable as such.

As it will be argued later, the history of cognitive science (and AI in par-
ticular) is one of the relaxation of the constraints on the forms these IBBs can
take, and the status of the quasilinguistic descriptions. The earliest computers,
which could process much less information compared to the modern ones, were
constrained in the kinds of computations they could carry out in a viable period
of time to rule-based symbolic computations. This limitation, which hindered
practical work on alternative approaches to computation, and the preoccupation
with certain mental tasks as the paragon of human intelligence (such as games,
automatic translation, solving physics problems etc.) led to a concentration
on certain kinds of computational explanation and the study of these mental
tasks in psychology. This early approach to cognitive science has been called
cognitivism.

The cognitivist program found its most prominent articulation in the two
fields which were among the primary contributors of cognitive science: AI and
cognitive psychology. After the second world war, these two fields cooperated
closely, establishing AI as a viable method to test theories, and cognitive psy-
chology as a field that studied humans to search for proof of the computational
mechanisms developed by AI research.

2.1.1 AI: The paradigm statement of cognitivism

The best-known and most-quoted statement of the cognitivist research program
in AI is that by Newell and Simon (1976), which frames the study of intelligence
in terms of a physical symbol system (PSS). A PSS has three constituents:

1. A set of entities, called symbols, which are physical patterns that can
occur as components of another type of entity called an expression (or
symbol structure).

2. A set of processes that operate on these symbol structures and modify,
create, destroy, or reproduce them.

3. A world in which these symbols and processes are embedded and with
which the system has the relationships of designation (dependency of the
behavior of the system on an object) and interpretation (expressions in
the system designate a process, and the system can carry out this process
when the expression occurs).

Two things have to be noted about this definition, which is the result of long
years of work in AI. First of all, it is a sufficiency claim: a system designed
on these principles has the capacity to act intelligently. Second, this is an
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operational claim, in that it is a principle for construction, aimed at directing
research in a certain direction and defining a paradigm. Touting the importance
of the central processing mechanisms, it relegates the property of intelligence to
these central mechanisms, making them the focus of cognitive research. A more
simple form the PSS hypothesis can be observed in scientific practice has been
rather succinctly formulated by Clark (1989):

The strong-physical-symbol-system (SPSS) hypothesis: A virtual ma-
chine engaging in the von Neumann-style manipulation of standard
symbolic atoms has the direct and necessary and sufficient means
for generating intelligent action. (p.12)

In the kind of computation envisioned by cognitivism, the “standard sym-
bolic atoms” are manipulated solely due to their syntactic properties; as Hauge-
land (1981b) points out, “given an interpreted formal system with true axioms
and truth-preserving rules, if you take care of the syntax, the semantics will take
care of itself” (p. 23). As it was mentioned above, cognitive science is based on
the idea of treating intelligent systems as intentional black boxes, which means
that the syntactically structured inputs and outputs to the system are stated in
terms of the domain in which the system is assumed to be/supposed to be intel-
ligent, such as pieces of a chess game and chess moves, objects in a blocksworld,
words in a text to be translated etc. Since the symbolic atoms have to share the
structure of the inputs and outputs in order to function in a system processing
them, their meanings are also derivative of the intentional interpretation which
accorded the system the status of intelligence and understanding in the first
place. That is to say, the atoms in the inner space of computation derive their
meaning from the interpretation of the input and output tokens. Such a system
which makes it possible to find “a neat mapping between a symbolic (concep-
tual level) semantic description of the system’s behavior and some projectible
semantic interpretation of the internally represented objects of its formal com-
putational activity” is called “semantically transparent” by Clark(1989, p.18).
It should be noted that the domination of semantically transparent systems in
AI research appeared as a natural situation to the researchers, as McDermott
(1981) observes:

Most AI researchers react with amusement to proposals to explain
vision in terms of stored images, reducing the physical eye to the
mind’s eye. But many of the same people notice themselves talking
to themselves in English, and conclude that English is very close to
the language of thought. (p.153)

As Anderson and Perlis (2002) point out, the definition of a symbol in Newell
and Simon (1976), and the future incarnations of the same idea, are in fact too
general to establish an empirical theory. A pattern is called a symbol when
it can designate or denote; they may designate other symbols, or patterns of
sensory stimuli and motor actions (Vera et al., 1993, p.9). Where the definition
of a symbol in PSS is too general, a look at the periphery of the definition,
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Figure 2.1: The Sense-Model-Plan-Act architecture.

to how the system is supposed to interact with the environment, reveals more:
“A physical symbol system interacts with its external environment in two ways:
(1) it receives sensory stimuli from the environment that it converts into symbol
structures in memory; and (2) it acts upon the environment in ways determined
by symbol structures (motor symbols) that it produces” (Vera et al., 1993, p.9).
These correspond to the designation and interpretation relationships mentioned
in the above definition of a PSS. In these relationships, and the ways symbols
are produced and consumed, we see the central idea of cognitivism as it was
used as a design principle in AI: the central processing mechanism is fed by
the peripheral perception mechanisms, and delivers representations of actions
to the peripheral motoric mechanisms. The possibility of such ideal peripheral
mechanisms was simply assumed, however, and the correspondence of the inter-
nal symbols to the objects in the assumed domain, hence the meanings of the
symbols the physical symbol systems processed, was solely due to the interpre-
tations of these systems as functioning in these domains. Brooks (1991) calls
the division of intelligent systems into perceptual, motor and central units the
SMPA architecture for “Sense-Model-Plan-Act” (See Figure 2.1.1) and claims
that the different submodules were also delegated to different research groups
and laboratories, which frequently did not have contact. This led to the difficult
aspects of perception and motor control to vanish from the radar of mainstream
of AI, despite their central importance in cognition.

Scientific work in AI, especially before the 1980s, consisted therefore mainly
of two areas: central algorithms, like planning, problem solving, knowledge rep-
resentation etc. and the peripheral mechanisms, like vision or motor control.
The first of these areas, work on central processing mechanisms in the symbol
processing paradigm, is called Good Old Fashioned AI (GOFAI) by Haugeland
(1985). In work in the framework of GOFAI, the interface between the central
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mechanisms and peripheral modules was assumed to be well-defined, and it was
taken for granted that the symbols that were processed in the central algorithms
had the meanings attributed to them by the researchers. Furthermore, compu-
tation was limited, in the domains which were seen as pure AI, to rule- and
logic-based methods, although peripheral fields like machine vision employed a
much wider range of algorithmic methods.

2.1.2 Discontents with Cognitivist AI

After initial successes and hopeful claims, discontents with the results of cog-
nitivist AI started surfacing. A report commissioned by the RAND corpora-
tion, which oversaw and funded most of AI research in the U.S., came to the
conclusion that the machine translation efforts underway had failed to make
progress. Another report commissioned by the British Science Research Coun-
cil (the Lighthill report) came to similar conclusions on AI work carried out in
Britain, and funding was cut down to a fraction of its earlier amount. Auto-
matic translation was one of the possible applications of AI with a lot of promise,
both due to the importance, in the post-Sputnik world of Cold War, of rapidly
translating documents from Russian into English, and as an ideal showcase of
AI methods, since it involved conversion of textual material to more text. As
the authors of both reports pointed out, however, this problem turned out to
be much more difficult than initially projected.

Dreyfus (1979) presented the outcomes of these reports in a critical and
philosophical context in one of the best-known and earliest criticisms of GO-
FAI. His criticisms can be summarized under a number of general points. The
first of these concerns the stipulated symbolic interface between the central pro-
cessing mechanism and the peripheral modules. The inputs to an AI system, at
least in the systems which accept appropriately formatted symbolic input, are
already pre-processed so that the program can carry out symbolic operations on
them. Dreyfus (1979) points out that in most contexts of human activity, the
production of such a formulation (conceptual perception) is already the most
complicated and crucial part. The presentation of a problem therefore already
contains a considerable part of its solution. A very similar criticism is made by
Chalmers et al. (1992) in their discussion of computational research on analogy.
They point out that in most models, the conceptualization on which structural
comparisons and derivation of analogical structures are to be carried out is al-
ready presented to the system in the form of a structured representation, and
the construction of this representation is the fundamental performance exhib-
ited by humans, especially when analogies are concerned. That is to say, even
if humans were to be assumed to use such structured representations, the sig-
nificance of these structures, and their suitability for use in different kinds of
reasoning tasks, would be a result of the mechanisms through which they are
created in the first place.

Another important problem discussed by Dreyfus (1979) is that of the role
of context and background, especially in language comprehension. In order to
disambiguate certain utterances, the speaker of a language has to make use of
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world knowledge he possesses. An example quoted by Dreyfus (1979) is the
sentence “The box is in the pen” (p.217). In order to find out what “pen” refers
to, one must know that boxes usually do not fit in pens, hence the pen mentioned
here is probably not a writing instrument, but the small fenced area in which
a child plays. However, if this sentence was uttered by James Bond to another
agent, “pen” might as well be a writing instrument, because special agents tend
to possess such instruments. Evidently, the context in which such an utterance
is made has to be brought to bear on the interpretation of the sentence. The
problem arises once this context is assumed to consist of individual facts itself.
If the context is also to be recognized as a collection of individual facts, how can
one formulate the further context in which these facts in turn are embedded?

There are two ways of avoiding an infinite regress. The first is to postulate
an absolute context, a “background”, which serves to conceptualize and dis-
ambiguate all situations. The construction of such a database of background
knowledge has been undertaken a number of times in the history of AI. One of
such projects started with the “naive physics manifesto” by Hayes (1979), who
proposed formulating a database of everyday knowledge, especially of the phys-
ical world. This database would consist of facts encoded in propositional form,
and would serve as background to any processes reasoning about the world.
After a decade of work on this project, by Hayes and many others, McDermott
(1987b) came to the conclusion that such a project is impossible to carry out,
and this was more due to principal reasons than resource limitations.2

The second way to solve (or rather understand) this problem is to break out
of the cognitivist framework and accept the existence of knowledge which does
not consist of a collection of facts, expressed in terms of context-free representa-
tions, but is formulated as know-how, as a way of being in the world. This relies
on an interpretation of phenomenological philosophy, and will be discussed at
the end of this chapter.

2.1.2.1 Parallel Distributed Processing

The rebirth of the perceptron approach as Parallel Distributed Processing (PDP,
also called connectionism), which brought the ideas of distributed representa-
tions and parallel computing into the forefront of cognitive modelling, was the
first step towards a proliferation of conceptions of computation and representa-
tion in AI and cognitive science, and alternative considerations on the meaning
of processes internal to the agent. Renewed enthusiasm in neural networks was
a result of work on networks with hidden units, which were proved to be able
to represent any arbitrary function (Haykin, 1999, p.208-209), and new algo-
rithms for learning with such networks, especially backpropagation learning.3

Although there are currently many different uses for neural networks, and con-

2Another well-known such project is the Cyc project which set out to do something very
similar, albeit without the limitations of first-order logic (Lenat and Feigenbaum, 1991). See
Smith (1991) for a thorough criticism of this project and its results.

3There are many textbooks on neural networks; for a comprehensive text see e.g. Haykin
(1999). For a philosophical discussion of the significance of PDP see Clark (1989).
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sequently many different network stuctures, initially, neural networks were used
for pattern recognition and classification tasks.

The contrast of neural networks to the classical symbolic systems lies, at
the operational level, in their capabilities to recognize incomplete patterns and
construct partial stimuli, their abilities to generalize to novel situations, and
their tunability to changes in the environment (Hinton et al., 1986). Individual
patterns and experiences are not represented locally in single nodes, but in the
connection weights of the network; neural networks are thus said to implement
“distributed representations”. This makes neural networks more robust, and
leads to graceful degradation in case of “lesions”, i.e. removal of parts of the
network or individual connections. Due to these properties, neural networks
were initially regarded as the solution to some of the most significant problems
of classical symbolic systems, for example by Dreyfus and Dreyfus (1988). The
advance of neural network approaches also brought their paradigmatic applica-
tion areas, pattern matching and micro-cognition, to the forefront of cognitive
modelling. As Hofstadter (1982) points out, this difference of focus can be un-
derstood as one between time frames in which perception and further cognition
take place. Hofstadter (1982) quotes Simon, who claims that “Everything of
interest in cognition happens above the 100-millisecond level” (p.632), and ar-
gues that exactly the opposite is the case; everything of interest in cognition
happens below this threshold.4

The distributed nature of representations in neural networks caused discus-
sions on the status of the representations these networks process, and the “mean-
ings” of the weights and network activations produced in response to stimuli.
It was argued that, because neural networks did not function on composition-
ality principles, they would be limited to the peripheral modules responsible
for perception and motor control, and never be useful for understanding cen-
tral processes (Fodor and Pylyshyn, 1988). Connectionists responded to this
criticism by arguing for the existence of a subconceptual level of processing:5

The subconceptual level hypothesis: Complete, formal and precise
descriptions of the intuitive processor are generally tractable not at
the conceptual level, but only at the subconceptual level (Smolensky,
1988, p.105-106).

Despite their many advantages and favorable qualities in comparison to sym-
bolic systems, neural networks have their own shortcomings. Backpropagation
learning, the most-used and best-suitable learning method for neural networks,
is a supervised learning method: the network has to be presented with the
“correct” responses to stimuli, in order to calculate error values and re-adjust

4This distinction is parallel to the peripheral mechanisms vs. central mechanisms distinc-
tion explained earlier. The central mechanisms, which correspond to internal deliberation, are
assumed to function at a longer time scale than those of perceptual mechanisms, which are
unintentional and comparatively spontaneous.

5It must be mentioned that this very short treatment glosses over an extensive literature
in the field of compositionality in network architectures; for an overview see e.g. Hammer and
Hitzler (2007).
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the weights. Applied to living beings, this leads to the assumption that they
have to somehow sense the correct response in case of an error, or during their
childhood, they pick everything done by their elders as correct. It is possible
to model reinforcement learning with neural networks6, but this requires the
inclusion of a model of the process the system is trying to learn in the network
(Sutton, 1991). Another problem with neural networks is that their topology
(connection between the different levels, the number of hidden units etc.) has
to be carefully calibrated by the designer; in order to avoid this step, neural
networks are sometimes evolved using genetic algorithms, which means using
neural networks as generators of dynamic behavior.

Neural networks have become a part of the standard toolkit of cognitive
science and AI. In the process, the idea of subsymbolic and distributed repre-
sentations have become a part of the conceptual vocabulary. Neural networks
are also widely used in situated AI in order to model dynamic controllers; this
will be discussed in the next chapter. Here, it must be pointed out that the
use of neural networks solely as disembodied and unsituated pattern classifiers
makes the PDP approach vulnerable to many of the same criticisms arrayed
at the symbolic approach. As Clark (2003) observes, “both [GOFAI and PDP]
agree that rational thoughts and actions involve the use of inner resources to rep-
resent salient states of affairs, and the use of transformative operations (keyed
to non-semantic features of those internal representations) designed to yield fur-
ther representations [. . . ] and, ultimately, action”. As long as neural networks
are used solely to map patterns of input to output nodes, both of which ac-
quire their meanings due to the interpretation of the designer, and not due to
a sensory-motor loop comprising a society of agents and the environment, they
will be prone to the same problems as the traditional approaches.

2.1.2.2 Representing actions in a changing world: The frame prob-
lem

An issue which attracted considerable attention is representing actions and their
effects in cognitive models of worlds which are temporally changing, known as
the frame problem (Pylyshyn, 1987). The frame problem originally appeared as
a technical problem in AI research, and was concerned with the representation
of the effects of actions on the system-internal variables (McCarthy and Hayes,
1969). The term was later appropriated by philosophers to refer to various
different problems and research topics, removed from the original AI perspective,
which caused ample frustration among AI researchers (see e.g. Hayes et al., 1996,
for a particularly acerbic example). In deductive approaches to AI, temporal
actions are represented through logic sentences which state what is the case
in different situations, and what changes through the application of a certain
action. However, stating what has changed is not enough; the designer of a
system which has to reason about such temporal changes also has to take into
account what does not change. It must be stated that, technically, the frame

6See Section 5.1.2 for a discussion of reinforcement learning.
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problem on itself is not that difficult; as McDermott (1987a) points out; “no
working AI program has ever been bothered at all by the frame problem” (p.
116). The problem is technically solved through the application of alternative
logical representations and methods; see Shanahan (2008) for a comprehensive
overview.

The deeper philosophical issue is nevertheless still relevant, as Fodor (2000)
has pointed out. An agent, operating on a collection of logical representations,
has to know the consequences of its actions in order to decide on a sequence of
actions for an end. If these consequences are represented in the form of facts
in an internal symbolic database, the computation of these consequences can
become intractable as the size of the database grows, even if it has a very fast
mechanism of checking for the results of an action and whether they apply in
the case given at hand. The reason is that the combinations of all the conditions
and outcomes leads to a computational explosion. As Fodor (2000) argues, this
more general problem is not endemic to GOFAI systems, but haunts any rational
system whose functioning is based on the processing of stored facts: information
relevant to a certain flow of reasoning can stem from anywhere in the system,
and catastrophically for a modular view which relies on the separation of the
central from the peripheral modules, also from perceptual and motor modules.
The problem of deciding on what is relevant to the current worries of a system
and what is not is called the problem of relevance by Anderson (2003), who
points out that this problem is closely related to the status of representations
in an embodied agent for which perception and action are not abstracted away.
What is relevant in a given situation depends on the capacities and the aims of
the agent, and consequently the situation will be perceived in that way; that is,
something is perceived and represented as relevant in the first place:

One moral which might be derived from the problem of relevance is
that it doesn’t make sense to think about representing at all unless
one knows what one is representing for. The [Sense-Model-Plan-
Act] model envisions the infeasible task of deriving relevance from
an absolute world model; but if we step back a pace we would realize
that no system can ever have such an absolute (or, context-free)
world model in the first place.

An interesting aspect to the frame problem – or generally the relevance
problem – is that a somehow similar problem on the Internet, which documents
are relevant to a certain query based on the occurrence of the terms in the
query, is solved to a sufficient degree by search engines such as Google. These
engines are technological proof of concept that huge amounts of data, as much as
there is available on the Internet, can be stored in such a way that the relevant
documents can be fetched in a matter of milliseconds for relatively complex
queries. This should not occlude the fact that relevance in this case is defined
solely by the co-occurrence of similar words and phrases. The complexity of the
queries is fundamentally limited to the presence of certain terms and the absence
of others, and more complex queries specifying further relationships in different
domains, or the intentions of the person searching the database are rarely taken
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into account. Furthermore, as technological devices, these programs need huge
amounts of fine tuning to e.g. fend off attempts to manipulate the search engine
by so-called “spammers” to direct attention to their own website. This need
for continuous calibration demonstrates that the relevance they calculate is a
matter of technological consensus, and depends on what counts, in the eye of
the beholder, as a relevant fact or not, and is not intrinsic to the system.

2.1.2.3 Symbol grounding

The issue of the symbols in AI systems having a meaning only for the people
that build and interpret those systems finally got a name when Harnad (1990)
christened it “the symbol grounding problem”:

How is symbol meaning to be grounded in something other than just
more meaningless symbols? This is the symbol grounding problem.
. . . The standard reply of the symbolist is that the meaning of the
symbols comes from connecting the symbol system to the world “in
the right way.” But it seems apparent that the problem of connecting
up with the world in the right way is virtually coextensive with the
problem of cognition itself.

From a wider perspective, there is a problem with calling the problem of how
the symbols used by humans are connected with the world the “symbol ground-
ing problem”, especially in the formulation given by Harnad (1990). First of
all, Harnad (1990) assumes that there are symbols which do not have to be
grounded, once there is a subset which serve as definiens for all the other sym-
bols. Second, it is assumed that this grounding has to be done by the individual,
and the symbols are then usable by this individual. As it will be argued later,
the grounding of a symbol is much more the job of a community, a fact which
would cause this issue to be called e.g. “the symbol sharing problem”. Third,
grounding symbols involves not only individual symbols, but also a structural
consistency which makes these units into symbols in the first place; an example
is one symbol having a part-whole relationship to another one. If such relation-
ships are not part of the symbolic capacity, it is difficult to talk about symbol
grounding. As Gasser (1993) argues, symbol grounding is actually a problem of
structure grounding.

What Harnad (1990) calls the symbol grounding problem has, despite the
issue being discussed in a relatively abstract format, some obvious practical
aspects. GOFAI systems which are designed to function in a certain domain
and have correspondingly special-purpose representational mechanisms and al-
gorithms are generally brittle and only limited to the domain for which they
have been constructed. When, in the case of e.g. a dialogue system, the user
wanders just a little outside the domain, or in the case of an autonomous system,
the environment exhibits irregularities not accounted for earlier, a breakdown is
unavoidable. This “wandering” has to be understood in a natural sense; when
we are buying a flight ticket, for example, we might start chatting with the clerk,
and such small talk would count as a natural part of the whole exchange. In
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case we are talking with an automated system, however, each word uttered has
to be strictly pertinent to the ticket buying situation. Therefore, a breakdown
which happens in the case of the user uttering something unexpected refers not
to the system going broke or malfunctioning, but its mechanic/programmatic
nature becoming obvious, such as giving nonsensical responses or demanding
correctly formatted input. These breakdowns are the moments where the dis-
cord between the nature of our mental processes and those of the computational
systems becomes obvious. The brittleness of such designed systems brings up
the issue that the meaning of their output is parasitic on our interpretation in
a certain context and for certain aims.

2.1.2.4 Modern successes of AI

Modern AI research is carried out in many relevant fields, such as machine
learning and robotics. This work is usually organized around certain well-
defined tasks and competitions. The best-known of these are the Robo-Cup
competition, in which simulated or robotic agents compete against each other
in football, and the DARPA challenge, which requires navigating different kinds
of terrains with mobile vehicles. When the outcomes of these contests are ex-
amined, it is obvious that there is considerable progress in such central areas as
planning, building world models from noisy sensory data, and motion control.
Although these competitions have not been without their exaggerated claims
of future human-level capabilities7, the pragmatic orientation of such research
means that comparisons with human capacities are secondary to practical con-
cerns.

It is nevertheless still all too obvious that these successful systems exhibit
extreme specialization in one single area, such as navigation or motor control.
The competitions have a great role in delineating these areas, and posing clear
goals for the researchers. It is still important to carry out research which tries
to bridge different domains, but this is not possible without at first simplifying
these to understand the essence of the problems, and to clarify the underlying
theoretical difficulties.

2.1.3 Cognitive Psychology

Cognitive psychology, which studies the mental processes “by which the sensory
input is transformed, reduced, elaborated, stored, recovered and used” (Neisser,
1967, p.4-5), is based on the same set of metaphors and computational ideas as
AI. The main difference is that cognitive psychology starts from the opposite
direction, and aims to decode the human cognitive system by analyzing it in
terms of knowledge structures and information processing mechanisms which

7From the official Robo-Cup website at http://www.robocup.org/overview/22.html: “By
mid-21st century, a team of fully autonomous humanoid robot soccer players shall win the
soccer game, comply with the official rule of the FIFA, against the winner of the most recent
World Cup.”

http://www.robocup.org/overview/22.html
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manipulate stores of such structures. The paradigmatic approach is present-
ing simple stimuli in carefully controlled experimental settings, analyzing the
responses with the assumption that these are the outputs of a computational
system, and deducing from these the mechanisms which are responsible for the
particular kinds of output received. The principle aim is to start from general
processes, taking these apart into progressively simpler and more specialized al-
gorithms, to arrive at a level which can be instantiated on computing machinery
(Lachman et al., 1979).

Symbolic representations play a role in cognitive psychology just as impor-
tant as in AI, due to the level at which the algorithms and knowledge struc-
tures are defined. This is called the “knowledge level” (Newell, 1982), and
this knowledge is coded in terms of the observer-dependent symbols discussed
above. Inherent in this view is the existence of individual pieces of symbolic
knowledge in the head, knowledge which can be recalled, reused and applied
to novel situations through transformations. In AI methodology, this knowl-
edge is programmed in and extracted from the environment; a major part of
AI research is concerned with finding a suitable representational formalism for
different domains. In cognitive psychology, a major goal is to find the putative
knowledge representations used by humans. As it is the case with AI, the status
of this knowledge is similar to that of linguistic representations, and in its ideal
form it is assumed to be abstract, and context- and task-independent.

Lave (1988) presents, in the context of research on learning transfer and ana-
logical learning, an elaborate overview of the intricacies of this view of knowl-
edge, and how it affects experimental setups and the interpretation of results
from these experiments. She reviews four articles discussing 13 experiments in
the field. In all these experiments, the task to be studied is constructed as a
“problem solving” task, by the experimenters, and not by the subjects. To put
it in a different way, the formulation of the task is already given as a problem,
although the subjects, had they faced the same task in real life, could have
formulated and coped with it through a different schema. Furthermore, these
problems do not serve anything else other than their own solution; solved prob-
lems do not serve any other activity or consequence. A striking result from the
experiments is how little transfer there is. If knowledge consists of the storage
and application of schemas and tools to novel situations, transfer should have
been all too easy to observe. In contrast to such a view of knowledge, the suc-
cessful cases of transfer rely not too seldom on the use of perceptual mnemonics,
such as the perception of two scenes, between which transfer was supposed to
happen, through the same guiding phrase.

The status of this assumed representational knowledge as context-
independent and abstract leads to difficulties in understanding how human be-
ings acquire and use it at all, and how it is bound to the task and context. The
coupling of knowledge to context-independent representations leads to a triv-
ialization of context, which in turn serves to equate the lacking experimental
context with the various real-life contexts. This, however is a direct result of
the view of knowledge as a tool to be applied to situations, without themselves
being effected by the situations: “Since situations are not assumed to impinge
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on the tool itself, a theory of learning transfer does not require an account of
situations, much less of relations among them” (Lave, 1988, p.41). In the light
of these points, Lave (1988) comes to the following conclusion regarding work on
knowledge transfer: “There are, then, two consistent, well-structured lacunae
in this work. One concerns the absent social situation, the other a silence about
what motivates problem solving and the transfer of knowledge from one setting
to another” (p.42). A possible reason for this emphasis on the abstractness of
knowledge, and the conceptualization of activities through which knowledge is
created and used as problem solving, model construction, and logical inference
is that cognitive psychology has taken the scientist as a model of human think-
ing; as Cohen-Cole (2005) argues, “From the earliest days of cognitive science,
studies of human mental processes treated thinking, perception, and language
as relying on scientific methods such as hypothesis formation and theory con-
struction” (p.119). These processes are modelled in terms of logical algorithms.
The aspects of scientific thinking which were picked to inform psychological
modelling were those which stressed the individual’s value as a creative thinker
and inventor: “[These psychologists] selected only certain aspects of the sci-
entific process to compare to thinking: inference, invention, problem solving,
making hypotheses, and model construction” (p.120). How the information was
collected in the first place, the role of the scientific community in the filtering
and organization of knowledge, and the amount of correction going into theory
building at every stage were simply ignored.

The work of Lave (1988) is a good example of approaches to cognition which
have a critical perspective on cognitive psychology, but do not wish to take a
simplistic view of the human mental apparatus either. Their aim therefore is to
enrich the idea of cognition so as to be able to study it in its full richness. The
first step in such a project is to criticize the narrow view of cognition taken by
cognitivism; in their review of such criticisms, Osbeck et al. (2007) summarize
the criticisms arrayed at cognitivism as follows: “Collectively, these charges of
mechanism, dualism, passivity, disembodiment, individualism and isolation from
context have done much to raise awareness of the shortcomings of cognitivism
as a psychological paradigm . . . it is the individualist and formalist aspects that
received the most attention from critics and that have inspired the most fervent
turns to alternative frameworks and methodologies” (p.249).

2.2 Studying the human mind

Psychology has the peculiar quality that it relies heavily on metaphors. In every
decade, the scientific method of studying the human being corresponds to finding
parallels with the current state-of-the-art in technology and using these paral-
lels to expound theories.8 As McReynolds (1980) points out, the recognition of

8See e.g. McReynolds (1980) for an interesting account of the effect of the development of
mechanical clocks on metaphorical talk of “springs of action” and the use of these mechanical
systems as metaphors in psychological theory. This metaphor was then used in various ways
to make a black box model of human science comprehensible.
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technological artefacts as possible sources of metaphorical objects depends on
the cultural receptivity and the existence of certain tendencies. The well-known
metaphor directing cognitive science in general and cognitive psychology in par-
ticular is that of the computer. The computer metaphor replaced the control
system metaphor promptly, although both arose at the same time, roughly after
the Second World War (Gardner, 1985).

The computer enabled the formulation of theories about the human being,
stated earlier in similar forms but without the support of the computer as a
demonstrating instance, with much more clarity and convincing momentum.
It served as a means of introducing a certain discourse to the scientific and
popular-scientific sphere, and legitimizing this discourse through the sheer tech-
nological power of the modern computational hardware. In its crude form, this
took the form of the argument of extrapolation of computational power, and
the comparison of this power to human computational abilities. Another re-
lated form the computer metaphor took is using names of human capacities for
functional components of a computer, and then seeing a theory of these exact
same parts in these so named components (von Foerster, 1980). This can take
on more insidious forms, as can be seen in some modern models of psychological
phenomena. Smith (1996) calls such reading back of theories from engineered
systems an inscription error : The box built in with the expected function is
then discovered to be the correct unit when it functions the way it was designed
to.

The computer metaphor flourished on fertile soil, based on the ideas which
preceded it; as Fodor (1981) points out, “the computer metaphor predates the
computer by about three hundred years” (p.140). The enthusiastic reception
it received in certain quarters is a result of the philosophical background es-
pecially in the analytic tradition. The idea of meaning on which cognitive sci-
ence traditionally relies is the one based on intentionality, famously attributed
to Brentano. His analysis differentiated between physical phenomena (such as
kicking a football) which does not exhibit intentionality, and mental phenomena
which does (Bechtel, 1988). In other words, “mental phenomena are those that
which contain an object intentionally within themselves” (quoted in Dummett,
1994). As Dummett (1994) points out, “the relation of such a physical act to
its object is external, that of a mental act to its object internal” (p.31). The
central dilemma of the representationalist position is the necessary distinction
between the things about which mental processes have to be and the objects in
the external world. This distinction leads to a number of serious philosophical
questions. The most notorious of these is the matter of what mental processes
or representations are about: If they already contain the thing about which
they are supposed to be, are they really about the external objects, or the
internal stand-ins for them? If a special status is to be accepted for mental
representations, it is very difficult to avoid a solipsist position which would de-
limit psychology and explanation for mental phenomena to an inner world in
the head of the individual.

When such a solipsist position is taken (as in Fodor, 1980), there appears the
problem of how to explain the content of a representation, a philosophical version
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of the symbol grounding problem. Due to the representational system being cut
off from the world, or in the case of AI, removed by perceptual mechanisms
still not in sight, the content of the representation must be derived from an
alternative source. As Haugeland (1990) argues, the solution proposed by the
philosophers taking this stance is to point at the role of the symbols in the
whole mechanism; in case the whole system makes sense as e.g. a chess player
when we attribute to one symbol the role of the representation of the position
of a pawn, we can assume that this attribution, and all the other attributions
we make for the elements of the system with this interpretation, are correct.
However, the human mind is not just a text to be interpreted, but a production
system on its own; how is it possible that such production takes place if the
representations do not refer to patterns in another domain, or at least, these
patterns are available only when the symbols are activated? The answer to this
question gives the key to the mutual dependency of the representational point
of view and the symbol processing paradigm:

Such specification is possible in general if internal symbols and inter-
nal operations are semantically articulated – that is, systematically
composed of atomic symbols and operations, such that the content
and validity of the composites is structurally determined by that of
their components. The relevant formal level, therefore, is not phys-
ical but syntactical, and hence also digital [. . . ] In other words,
semantic activity is possible if thinking is an internal computational
process conducted, so to speak, in a language of thought. This is
why artificial intelligence and cognitive science belong at the first
base. (Haugeland, 1990)

The computer metaphor, computational methodology in cognitive science and
the rationalist view of the mind have created together what can be called a
“perfect storm” by supplanting each other with a philosophical background,
metaphors to talk with, and concrete examples to demonstrate the viability
of the abstract mechanisms envisioned. As Fodor (1994) succinctly argues, the
combination of the symbol processing machine and the replacement of semantics
with syntax can be presented through the use of the computers much more
forcibly as a viable theory of mental phenomena:

Within certain famous limits, the semantic relation that holds be-
tween two symbols when the proposition expressed by the one is im-
plied by the proposition expressed by the other can be mimicked by
the syntactic relations in virtue of which one of the symbols is deriv-
able from the other. We can therefore build machines which have,
again within famous limits, the following property: the operations
of such a machine consist entirely of transformations of symbols; in
the course of performing these operations, the machine is sensitive
solely to the syntactic properties of the symbols; and the operations
that the machine performs on the symbols are entirely confined to
alterations of their shapes. Yet the machine is so devised that it
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will transform one symbol into another if and only if the symbols
are transformed stand in certain semantic relations; e.g. the relation
that the premises bear to the conclusion in a valid argument. Such
machines – computers, of course – just are environments in which
the causal role of a symbol token is made to parallel the inferential
role of the proposition that it expresses.

This combination of representationalism and the computer metaphor had
two important consequences, which were so deeply ingrained in cognitive science
for a long time that they were not even clearly formulated, even though they
were pillars of research. The first of these is the individualistic character of
the search for the original mental. The individuals are the ones that represent,
and all the accounts rely on the power of the individual to keep up such webs
and structures of representational powers standing. Hutchins (1996) states the
individualistic character of cognitivism rather clearly:

Having failed to notice that the central metaphor of the physical-
symbol-system hypothesis captured the properties of a socio-cultural
system rather than those of the individual mind, AI and information-
processing psychology proposed some radical conceptual surgery for
the modeled human. The brain was removed and replaced with
a computer. The surgery was a success. However, there was an
unintended side effect: the hands, the eyes, the ears, the nose, the
mouth, and the emotions fell away when the brain was replaced by
a computer . . . the definition of cognition has been unhooked from
interaction with the world. (p.363)

The second consequence is the fundamental division of the world into two: the
physical world and the mental world in the head of the agent. The role of
the central processing apparatus is to function on the inner world and devise
plans aimed at reaching goals; the sensory and motor apparatus have the duty
of making sure that this inner world confers with the physical one. In GOFAI
and early robotics, this distinction is very clearly seen in the form of the inter-
nal world model. As Agre (1997) argues, the inner world was not limited to
AI: “Concisely put, mentalism provides a simple formula that gives plausible
answers to all questions of psychological research: put it in the head” (p.51).

2.3 A wider perspective

The main reason that the two fundamental tendencies of cognitivism, limiting
cognition to the individual and establishing a realm parallel to the shared world
in the mental, have been taken to be self-evident and integrated to the scientific
methodology without scrutiny is that these tendencies are also deeply ingrained
in the general way we think about ourselves and the our relationship with the
world. This fact derives from the historical context in which the development
of modern philosophical traditions were embedded. In the scholastic period,
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the fundamentals of knowledge were safe and clear: the Bible, coupled with a
Christian interpretation of the Aristotelian philosophical system, was the ut-
most arbiter of truth and source of fundamental knowledge. As the authority
of the Bible started waning with the authority of the Church, and the physi-
cal sciences started gaining ground with their mathematical and experimental
methods, European philosophers started looking for an alternative grounding of
knowledge. The emerging physical sciences presented a different world to the
human being, one which it could understand using its own faculties, but one that
at the same time was hostile, as a distance between the real and the perceived
was introduced through the idealization of objects (frictionless surfaces, perfect
spheres), and introduction of fundamental laws which contradicted everyday
experience directly (e.g. bodies which maintain their motion indefinitely). Na-
ture could now be understood and controlled, but only through the language of
the computable; mathematics was the medium through which nature spoke to
us, and whoever wanted to understand it, had to grasp mathematics. Mathe-
matical formulation became the fundament for the natural sciences, the “exact
sciences”. The lack of a fundamental text for the human was obvious. Descartes,
who already supplied a fundamental mode of understanding for the mathemati-
cal sciences with his Cartesian geometry, started looking for such a formulation
and language for the human being. The senses could be cheated, and the world
was but just one complete attempt at fooling the human being. He found this
formulation in the clear and distinct ideas, which found their root back in God.

Descartes’ search for a new original and founding text established the ide-
alized mental realm, instead of the shared human world, as the new exclusive
text to be interpreted and understood. The development of the mathematical
sciences contributed to the idealization of the abstracted and idealized objects.
The ideal human being came to be seen as one who could command the abstract
capabilities at best. Thinking with such rigid abstractions which are context-
independent and linguistically loaded came to represent the paragon of human
capacities; scientific thinking, which came to be the exemplary case for such
thinking, came to represent the ideal to which all human activity should strive.

As it can be seen from this short history, two central aspects to this “re-
ceived view” are crucial. The first is the primacy of processes internal to the
mind; these are where knowledge has to be founded, and the ground on which
the ultimate method has to be developed. The second is rational thinking as
the ideal of all thinking. Rationality, in its perfect form, becomes computation.
The combinations of these two attitudes came to be known as Cartesianism in
later philosophy and cognitive science. The centrality of Descartes’ thought to
the rationalist orthodoxy is explained perfectly by Taylor (1986), who points
out that the philosophical project of an epistemological foundation for the sci-
ences in particular and correct thinking in general has to be understood in the
context of the assumption of knowledge as correct representation of an inde-
pendent reality. If the contents of these thoughts are to supply me with correct
knowledge, Descartes argues, their congruence with the outer world should be
verified through a reliable method; mere coinciding of these two spheres does
not suffice. Descartes connects this point to the newly rising scientific method,
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to provide a foundation for the modern rigorous search for truth:

The seeker after science is not directed away from shifting and un-
certain opinion toward the order of the unchanging, as with Plato,
but rather within, to the contents of his own mind [. . . ] Descartes
is the originator of the modern notion that certainty is the child of
reflexive clarity, or the examination of our own ideas in abstraction
from what they ‘represent’, which has exercised such a powerful in-
fluence on western culture. [. . . ] the ideal of self-given certainty
is a strong incentive to construe knowledge in such a way that our
thought about the real can be distinguished from its objects and
examined on its own (Taylor, 1986).

The primacy of the mental and the status of rational thinking as ideal and differ-
ent from other kinds of activity, once established by the foundational discussions,
constituted what can be called the received view of most of philosophical think-
ing. This received view has a number of repercussions which occupied future
thinking for a long time. One important among these is scepticism. Since minds
and the mechanisms they employ to perceive the outer world are so fallible, and
since we have no other means of knowing the world, then how can we know for
sure that we know the world at all? That is, we are captive in our own minds
and cannot get out. On the other extreme end of the disengaged world and mind
view lies the constructivist thesis that we make the world. Another result of
the received view is the mind-body problem; once the real world and the mental
world are separated, the distance between the two becomes unbridgeable. As
an extension especially of this second problem, in cognitive science, the Carte-
sian attitude concerning the study of human intelligence and design of artificial
agents exhibits itself in the rejection of the central importance of bodily activ-
ity and further stress on abstract thinking to the exclusion (or subsumption)
of other faculties: “This denial that sensing and acting in the world require
thinking, and the concomitant identification of thinking with the higher-order
reasoning and abstraction paradigmatically displayed in language use is perhaps
the true heart of the Cartesian attitude” (Anderson, 2003, p.93).

2.4 Alternatives to a Cartesian philosophy

As it was pointed out above, the development of AI can be viewed as a replaying
of the fundamental dichotomies of philosophy, but with different responses to
breakdowns. The history of the problems and dead-ends of AI research provides
rich analogies when compared to the history of philosophy, as an interesting
observation by Dreyfus (2007) attests:

As I studied the RAND papers and memos, I found to my surprise
that, far from replaying philosophy, the pioneers in CS had learned
a lot, directly and indirectly from the philosophers. They had taken
Hobbes’ claim that reasoning was calculating, Descartes’ mental rep-
resentations, Leibniz’s idea of a “universal characteristic” – a set
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of primitives in which all knowledge could be expressed –, Kant’s
claim that concepts were rules, Frege’s formalization of such rules,
and Russell’s postulation of logical atoms as the building blocks of
reality. In short, without realizing it, AI researchers were hard at
work turning rationalist philosophy into a research program.

Therefore, it is highly instructive to look at the state of the philosophical dis-
cussion regarding the life-world of human beings and their status as knowledge
producing and processing beings. The orthodox view of world as an external
puzzle and mind as the internal arena to reproduce it has been criticized by a
number of philosophers and philosophical traditions. Among these, the most
important for cognitive science are the phenomenological tradition starting with
Husserl, and finding its prime representative in Heidegger, and the language-
criticial philosophy of Wittgenstein. These two philosophers and traditions have
also been the most important influences for situated cognitive science, which will
be overviewed in the next chapter.9

2.4.1 Wittgenstein

One of the most important and philosophically most pregnant reactions to the
internalizing discourse is that of Wittgenstein’s. Wittgenstein, after attempting
a fundamental methodological grounding of philosophy with Tractatus, retracts
a number of (especially methodological) assumptions he made in the Tractatus,
and argues for an understanding of the ways we use words when we talk. The
language game concept, which he develops to use as toy situations to exhibit
the central ideas has been appropriated by researchers in AI and artificial life
to study the dynamics of language. Wittgenstein, instead of establishing an
elaborate theory of language, carves out the possibilities it offers, and what can
be said and what, although it appears to make sense, is in reality nonsense,
especially in a philosophical context. The Tractatus, Wittgenstein’s only work
published in his lifetime, aims to establish this through the use of the logical
methods introduced by Frege and Russell, and places itself in the same vein
of looking at language to diagnose the problems philosophers got entangled in:
“Alle Philosophie ist ’Sprachkritik’ ” (Wittgenstein, 1984, §4.0031).

In contrast to the Tractatus, the Philosophical Investigations looks at the
ways humans use language, how this use is connected to daily practice, and the
interfaces between everyday language and its use in philosophy10. Philosophical
Investigations maintains the transcendental focus of the Tractatus, in that the
conditions for possibility of certain phenomena are studied, albeit with more

9The discussion here glosses over the many intricacies discussed in the literature, and
the discussion stirred by these individual philosophers. The aim here is to show that there
are alternative philosophical construals which can go very deep, and not to give a complete
overview.

10As it was mentioned above, most of the major themes concerning language in the Philo-
sophical Investigations are already mentioned in the Tractatus, but not fully developed, and
not treated as the primary subject matter. See Blume and Demmerling (1998), Chapter 2 for
further details.
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accent on how we talk about these phenomena, and the ways our own language
tricks us (§90); this is what Wittgenstein calls “grammatical investigation”.
Wittgenstein is concerned with the ways we get enchanted by language itself,
and he argues that most philosophical problems stem from misuse of language,
and disregard for the conditions in which proper use of linguistic forms makes
sense and are warranted.

Philosophical Investigations starts with a criticism of what Wittgenstein
sees as the prevalent view of meaning, which he exemplifies with a quote from
Augustinus. In this quote, Augustinus claims to remember how he learned to
speak: The adults in his environment pointed to objects, whereby they uttered
their names, giving him the chance to connect words with their objects11. The
essence of this view of language and language acquisition is the idea that “Jedes
Wort hat eine Bedeutung. Diese Bedeutung ist dem Wort zugeordnet. Sie ist
der Gegenstand, für welchen das Wort steht” (Wittgenstein, 2001, §1). In order
to criticize this conception, which he calls “Augustine’s conception of language”
(§4), Wittgenstein brings our intuitions regarding language under scrutiny.

In order to undermine the intuitions we bring to the understanding of lan-
guage, Wittgenstein introduces the concept of language games in the Blue Book
(Wittgenstein, 1991):

Language games are the forms of language with which a child be-
gins to make use of words. The study of language games is the
study of primitive forms of language or primitive languages. If we
want to study the problems of truth and falsehood, of the agreement
and disagreement of propositions with reality, of the nature of asser-
tion, assumption and question, we shall with great advantage look at
primitive forms of language in which these forms of thinking appear
without the confusing background of highly complicated processes
of thought. (§17)

Until and through Philosophical Investigations, the idea of language games is
developed and extended to the study of invented language game setups and frag-
ments of actual linguistic processes.12 Wittgenstein uses the idea of language
games to demonstrate and study linguistic communication; these are prototyp-
ical cases of language use, such as giving and obeying a command, describing
an object, telling a story, making assumptions about a certain event etc. (§23).

There are two important features of Wittgenstein’s concept of language
games (Wittgenstein, 2001, §7). The first is that they depict processes where the
use of symbols in communication is interconnected with concrete and situated
practice. The simplest language game example given by Wittgenstein involves

11It must be pointed out that the choice of the text by Augustinus, despite many other
texts exhibiting the same spirit on language, is not coincidental; in the preceding paragraphs
of the same work quoted by Wittgenstein (the Confessions), Augustinus paints a picture of
the human baby already having wishes inside it, and the other people outside, to whom it
cannot communicate its desires. This metaphor of inner/outer is also the topic of further
chapters of Philosophical Investigations; see p.38 of McGinn (1997) for details.

12For a review of the idea of language games and the change it has undergone in various
works of Wittgenstein, see Baker and Hacker (1984), Section III.
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a construction worker and his assistant. The construction worker uses certain
tools and materials, which he refers to using certain words, such as “block, pil-
lar, slab, beam” (Wittgenstein, 2001, §2), and his assistant then fetches these
objects for him. This language game is also meant to resemble a simple language
acquisition scenario, through which a child gets introduced into the general prac-
tice of language use. The general concept of language games and the simplest
example have been picked up by cognitive science as a useful setup with the use
of which to study linguistic communication and symbol use; these subjects will
be discussed in Section 4.2.

The second important feature of the concept of language games is the use
of the word game to describe these situations. As Wittgenstein (2001) points
out in §3, the concept of game is very difficult to pinpoint and define, although
we are very adept at using it in communication and agreeing on what is a game
and what is not. Further, games do not have a common feature set either (§66);
they rather share certain features, like the members of a family, but none of
these features is common to all games. A set of objects which belong together
in such a set through shared similarities none of which are definitive of the
set is said to possess “family resemblance” (Wittgenstein, 2001, §66). Such
a case of family resemblance is also valid of Augustinus’ depiction of how he
learned language, the simple case of language use in the first langugage game
mentioned by Wittgenstein, and especially the ideal languages which rely on
the power of assertions to depict the world: we can count different individual
episodes of language acquisition and use, and each one of them is a “game”, but
there are many more variations to them which would still count as linguistic
communication, and we cannot expect to exhaustively arrive at a definition.
All we can hope for is to study those individual cases to discover ever more
aspects.

This second point is especially relevant for cognitive science, a field that
has an extremely multi-faceted phenomenon as its scientific object. At another
point in Philosophical Investigations, Wittgenstein comes back to the problem
of the status of toy situations (such as his language games) in comparison to
the authentic human phenomena. He claims that in philosophy very often the
ideal case is opposed to the real phenomenon as a preconception to which it has
to live up to (§131); language is a great example for this mistake, as the human
language has been compared to all kinds of ideal languages and found missing
many desirable qualities. The many aspects of human intelligence have a similar
status in cognitive science: compared to ideally rational mechanisms, human
behavior is occasionally found to be not rational in a strict sense. Furthermore,
various aspects of human behavior are seen as individual subjects independent of
each other, and a single model of a subject is assumed to completely explain it.
Instead of such a tendency of equating the artificially constructed toy scenarios
as equals or ideal cases of the original, Wittgenstein argues for using them as
“Vergleichsobjekte, die durch Ähnlichkeit und Unähnlichkeit ein Licht in die
Verhältnisse unsrer Sprache werfen sollen” (Wittgenstein, 2001, §130).13

13Clancey (1997) observes the relevance of this attitude for AI:
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One of the primary lessons of this first language game relevant to the current
purposes is the codependency of what Wittgenstein calls forms of life and lan-
guages: “Und eine Sprache vorstellen heisst, sich eine Lebensform vorstellen”
(§19). As the most simple language game demonstrates, all kinds of language
use take place in a certain setting where other capabilities of the individuals
are necessarily employed to take part in a social practice. Furthermore, various
things we can say about the people that take part in the game make sense only
in the context of the game and in how they use the signs; for example, when
the construction worker says “beam” and means that he wants a beam, this
wanting is not in the word, or in a certain relationship his mental state has to
the concept beam, but in the language game, and the ways he can employ the
signs in this game. Therefore, the use of linguistic symbols have to be seen in
the context of the non-linguistic behavior which they help form, and which they
derive their primary significance from: together, they create a form of life. 14

The first language game is used by Wittgenstein to demonstrate the futility
of attributing a meaning to the words used in the game and then concentrating
on these meanings as the hidden thing that will provide an explanation. One can
assume that the assistant, upon hearing the word “slab”, forms an image of the
physical object in his head, and this image (the concept) would be the meaning
of this word. Even if this were so, this would not correspond to the case at hand:
that this word is used in such and such a way in the game, and this complete
configuration of embodied and social practice constitutes the meaning of the
word. Regarding the same point, Wittgenstein asks us to imagine a tribe whose
language is limited by the one in this simple language game (§6). The initiation
of the children into this language game would involve “ostensive definition”, an
adult pointing to an object and uttering a name. Even if we were to accept that
he could somehow single out the object as the topic and connect the word with
his mental image of the object, can it be said that he has learned to understand
the word? No, because his understanding the word would require another round
of instruction to teach the child to fetch the object when its name is uttered;
if this instruction round taught the child a different practice, his understanding
of the word would also be different.

The most relevant lesson for cognitive science to be gleaned from Wittgen-
stein’s discussion of language and meaning in Philosophical Investigations is the
relationship of the public language to an inner language which is more precise,
and which serves to ground all meaning. A typical way of analyzing the short
imperative sentence “Slab!”, which commands the hearer to fetch a slab, is to
view it as the short version of “Bring me a slab!”; this longer sentence is more
precise, and states what the utterer wants more clearly. Therefore, one is in-

Emphasizing the similarities between people and computer models, rather than
the differences, is an ironic strategy for AI researchers to adopt, given that one
of the central accomplishments of AI has been the formalization of means-ends
analysis as a problem-solving method: Progress in solving a problem can be
made by describing the difference between the current state and a goal state
and then making a move that attempts to bridge the gap. (p.6)

14For a similar notion in AI, see Agre (1985).
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clined to say “The meaning of ‘Slab!’ in the primitive language of the builders
is ‘Bring me a slab!’ ”. From here, it is just a small step to the conclusion that
the mental representation, the ultimate meaning, of the sentence “Slab!” in the
head of the utterer should be a corresponding sentence in mentalese, the trans-
lation of “Bring me a slab” into an internal language. The listener, when she
tries to understand this command, decodes this sentence to arrive at a similar
representation in her own mental language:

[T]o assert that unconscious or implicit thought of the longer sen-
tence always occurs is already to assume that “Bring me a slab” is
a more accurate expression of the “elliptical” command “Slab!”: it
is to assume that our operations with “Slab!” are mediated by some
more basic relation to “Bring me a slab” (Goldfarb, 1983, p.276).

The most important reason to resist this urge to locate a definite meaning in an
internal sphere in the description of a (possibly) elliptical sentence is the regress
of description. There is no end in sight when one starts to ground sentences
in their descriptions/translations in mentalese; a description can go on forever
when the terms in each individual explanation are to be described themselves
(§87).15

Wittgenstein’s work on language games provides a strong argument for the
role of the embodied and social practice in understanding symbols use; this is
the primary reason it has been taken as a suitable analogy for research into
the dynamics of communication. However, his arguments against equating our
models of things with the real phenomena, and the various aspects of complex
phenomena like communication also have to be taken seriously.

2.4.2 Phenomenology

The domination of the scientific innovations and technological advances, es-
pecially at the beginning of the twentieth century, led to the crude scientific
worldview to become common sense. The basis of this worldview was repre-
sentationalist and quasi-platonistic: The world consists of objects, which we
perceive and construct in our mind, and science is about the essence of these
objects, how they are in themselves. These objects, which appear in our ex-
perience as the imperfect copies of the ideal bodies they are in the scientific
practice, occupy the geometrical space which we also inhabit. Husserl, in his
criticism of this worldview, and the rapid appropriation it has seen in also phi-
losophy and psychology, argued that the ideal objects of this worldview, such as
frictionless surfaces or perfectly homogeneous solid objects, were abstractions
which emerged out of a certain kind of involvement with the world, and certain
social practices (Husserl, 1982). In order to bracket out the preconceptions with
which human beings see their world and conceptualize their involvement with
it, he proposed what he called the phenomenological method. This method

15This argument does not have much force in a cognitive scientific context, since, compu-
tationally, there is no serious problem with a highly interconnected network.



CHAPTER 2. REPRESENTATIONALISM 38

consisted of accepting the world as given to the human being in a certain way,
and disregarding the questions of how it actually is independent of human ex-
perience; more precisely, phenomenological reduction aimed at a “redirection of
thought away from its unreflective and unexamined immersion in experience of
the world to the way in which the world manifests itself to us” (Thompson and
Zahavi, 2007).

A student and colleague of Husserl’s, Heidegger, took Husserl’s phenomeno-
logical method further, both in the historical and the transcendental sense.16 In
the historical sense, he urged a reevaluation of the history of western philosophy,
especially since the works of Descartes, and turning away from the dominant
epistemological concerns this tradition has led to. In the transcendental sense,
Heidegger argued for a primacy of the question of being in philosophy. Among
the things that make his philosophical stance revolutionary, the integrity of
these two aspects comes second only to the specific language with which Hei-
degger tackled these issues. This language is a very peculiar one, relying on the
productive aspects of his native German language, and repetition of key phrases
to avoid losing the meaning of certain words to a familiarization effect.

Heidegger (2001) characterizes the intentional sphere of the human being as
one structured by the human being itself, where this structuring is the basis of
all further inquiries, scientific or philosophical. Therefore, in order to answer
the question of what is, which can be paraphrased as the question of how the
world in which humans live comes into existence as a space of meaningful entities
and, simply, objects we can refer to and conceptualize, a foundational ontology
has to start from the understanding the human being has of this world even
when asking the question: “Die Seinsfrage ist dann aber nichts anderes als die
Radikalisierung einer zum Dasein selbst gehörigen wesenhaften Seinstendenz,
des vorontologischen Seinsverstëndnisses” (p.15).

Since we are cultural-historical beings, however, the understanding the Da-
sein has of being is possible against a certain background and carries with it
its own development; it is historical. It has been occluded by the turns western
culture and philosophy have taken. The most consequential of these turns is
the Cartesian turn, which instilled an understanding of the world as something
independent from us, and ourselves as individuals trying to make sense of it.
The Cartesian turn is a result of the tendency of the Dasein to understand it-
self in terms of its own world, what Heidegger (2001) calls the “ontologische
Rückstrahlung des Weltverständnisses auf die Daseinsauslegung” (p.16). The
Cartesian framework has become a background, the shared common sense, when
it comes to even asking the questions in the first place. Therefore, the first
duty of a philosophy trying to clear the grounds for a proper understanding of
human existence is putting itself before the traditional questions, and under-
taking a “destruction” of this background. This move of Heidegger’s is analog
to Wittgenstein’s method of getting at the way philosophical questions are for-

16The relationship of Heidegger’s philosophy to that of Husserl, who was a teacher and
mentor of Heidegger, and their personal relationship, is a subject discussed intensely. The
details of their philosophical differences will not be discussed here, but the interested can refer
to §12 of Tugendhat (1970).
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mulated in the first place; the example of how the explanation of a sentence
as simple as “Slab!” is taken to be the meaning of this one-word sentence is a
typical case.

Heidegger’s dismantling of the Cartesian common sense, as Guignon (1983)
argues, can be summarized as consisting of two arguments (p.38). The first
of these aims at the ontological assumption of the Cartesian tradition, which
describes human participation in the world using a subject/object schema.
Against this assumption, Heidegger argues that the immersed practice of daily
life grounds the contemplative attitude, and comes before it. The second ar-
gument aims at the method with which certainty is to be established, and all
knowledge is to be grounded, according to Descartes. The method proposed by
Descartes is inspired by the scientific method, where a complex is first taken
apart, and then understood as an interaction of its parts. Heidegger argues that
the scientific method also relies on our everyday existence and certain kinds of
social/embodied practices. In order to partake in such a practice, one has to
be immersed in it. Therefore, a global description of our practices, and of the
knowledge that grounds in these, is impossible.

Heidegger proposes to formulate an answer to this question on the practice of
humans, viewing their daily activities as the necessary conditions for an objec-
tivising and representational discourse, especially so when it comes to science.
The human being can engage in certain activities, including science, only thanks
to its being in the world at all times, as an agent engaged in and realizing a
certain form of life. The implications of this view for the philosophical project
of grounding knowledge are clear:

What you get underlying our representation of the world – the kinds
of things we formulate, for instance, in declarative sentences – is not
further representation but rather a certain grasp of the world that we
have as agents in it. This shows the whole epistemological construal
of knowledge to be mistaken. It doesn’t just consist of inner pictures
of outer reality, but grounds in something quite other. And in this
“foundation”, the crucial move of the epistemological construal –
distinguishing states of the subject (our “ideas”) from features of
the external world – can’t be effected. We can draw a neat line
between my picture of an object and that object, but not between
my dealing with the object and that object (Taylor, 1986).

Therefore, it can be said that, concerning the discussion on intentionality, Hei-
degger opposes a strict distinction between physical and mental phenomena on
the basis of their aboutness, and wants to look for the grounds of meaning pri-
marily in the embodied and socially situated practices of human beings. This is
due to the way human beings exist in the world; we are always in the world, and
this being in is not only in the sense of physical containment, but in the sense
of caring about it, and the things presenting themselves as tools to ends, and
not meaningless blobs. Through this perception of the situation as meaningful
entities, the world becomes the horizon of what we can do, and what kinds of
existence are possible.
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One concept from the work of Heidegger which has received attention from
the AI community is his distinction of tools as being either zuhanden or vorhan-
den. During practical engagement, the tools used by humans for a certain pur-
pose recede to the background and become transparent to the user, practically
becoming an extension of the human embodied apparatus; in this case they are
said to be zuhanden (ready-to-hand). In the case of a breakdown, the particular
existence and structure of tools become apparent, and the tool serves not as a
way of enhancing our activity, but as an impediment; in this case, such a tool
is said to be vorhanden (present-to-hand) (Heidegger, 2001, p.66). When the
everyday activities we engage in with things break down (e.g. when a hammer I
use regularly is broken), I become conscious of the situatedness which normally
makes my interactions possible:

[W]hen something we intend to use is discovered to be unusable,
or when something we need is missing, or when something we need
to get around stands obstinately in the way [. . . ] things are no
longer there ready-to-hand, and just in that instance we catch sight
of the very situatedness that normally characterizes our existence
[. . . ] The situated view (which in other terms Heidegger calls the
“hermeneutic situation”) is something that qualifies all theoretical
knowledge and all third-person scientific accounts. Moreover, being
situated is something that in its inconspicuousness tends to escape
our attention, but not simply because we overlook it, in the way
that we might overlook something in the environment. Rather, it is
part of what it means to be situated that the fact of being situated
commonly goes unnoticed (Gallagher, 2008).

Rationalizing and deliberation happen primarily in the case of such breakdowns;
normally transparent situations become problem-solving settings. The major
mistake traditionally made in philosophy is to confuse these problem-solving
situations with the situated engagement of ordinary daily life. In such engage-
ment, what can be called the background of the practices is not necessarily
represented, as there is no need to represent them; when I am going out the
door, I always lock after me. To know that the door is locked and no one can
break in, I don’t need to know how locks work. However, when this lock gets
picked, it becomes of importance to me, and explicit knowledge enters the sit-
uation. Furthermore, this background is social in that it is co-consituted by
institutions and people (in this case locksmiths, burglars etc.):

For Heidegger, the Background is primarily socially constituted; it
is a network of artifacts and institutions. We avail ourselves of it in
virtue of the social practices and institutions in which we participate,
and the general tendency or capacity to participate in social practices
is a primordial characteristic of Dasein, which I would like to call
sociality (Preston, 1993, 61).17

17For an approach which locates a considerable part of this Background in the biology,
specifically evolutionary history of the being, see Wheeler (1995).
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As it can be seen, Heidegger responds to the dominant tradition which
equates human mental life with the existence of an inner sphere by claiming
the primacy of a world in which humans always find themselves, even when
taking part in scholarly speculations, and which makes it possible to engage
in such activities in the first place. Inherent in such a view of the world is
a questioning of the idea of aboutness as intentionality, i.e. as representation;
for Heidegger, socially and physically situated practices come first, and these
ground any further activities which might involve the use of representations and
symbolic means of communication.

2.4.3 A philosophy for the new cognitive science

The philosophies of Wittgenstein and Heidegger not only display the hidden
convictions of the rationalist and representationalist traditions on which tradi-
tional AI and cognitive science are based, they also offer alternative directions
in which to look, and different analogies and comparative instances to base our
models on. These are based on the rejection of Brentano’s depiction of the men-
tal as the sole intentional phenomena, arguing for an idea of intentionality as
directedness, deriving from embodied interaction and cultural embeddedness.
As it will be shown in the next chapter, the insights of both Wittgenstein and
Heidegger have been incorporated in a new research program for cognition, and
have led to radically new insights.



Chapter 3

Embodied and Situated
Cognitive Science

The theoretical problems and practical breakdowns presented in the previous
chapter led to the rise of an alternative framework in cognitive science starting
from the early 1980s. The main focus of this approach was on the embod-
ied and situated character of natural behavior and human intelligence. It is
possible to distinguish two strands in this work. One of these is the situated
approach, analyzing human intelligence and behavior from a context-bound and
social perspective, taking a top-down approach. The other strand is the embod-
ied approach, which aims to develop models of embodied behavior and create
bottom-up models of it.

The situated approach has built on the philosophical background explained
in Section 2.4. It has been able to build on a considerable body of work in related
disciplines in the social sciences. Embodied AI, on the other hand, was born
out of a changing perspective on the subject matter of AI, and an engineering
insight into the impeding role of representations. Eventually, the two research
groups arrived at a common vocabulary and shared research concerns. In the
following, first embodied AI, and afterwards situated cognition will be discussed.
Afterwards, an extended discussion of the common themes will be presented.
In addition, the repercussions of research in these two areas on theories of the
role of symbolic communication and representations will be overviewed.

3.1 Embodied AI

The driving forces behind an alternative to the symbolic paradigm in AI and
robotics are the realization that the meaning of the symbols used in these dis-
embodied systems was parasitic to the interpretation of the humans that design
and use them (discussed in the previous section), and an alternative vision of
what the product of work in AI has to be. This alternative vision exhibited it-
self especially in the decomposition of the agents in the design process. Instead
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of relying on the functional level decomposition, corresponding to the SMPA
principle mentioned in the previous chapter, a behavior-level (or task-level)
decomposition method was adopted. The difference between the two is most
pronounced in the work of one of the pioneers of embodied AI, Rodney Brooks.
Brooks (1991) advocated going back to the basics of intelligence, namely to
bodily behavior and perception. Instead of systems which reasoned about ac-
tivities and plans, Brooks’ robots engaged in relatively simple tasks in the real
world. These tasks were simple from a cognitivist perspective, because they did
not engage in complex reasoning, but difficult with the existing computational
methods, because they involved real-world action and perception in noisy and
dynamic environments. The robots and their behavioral modules were designed
from the ground up, by developing basic building blocks of behaviors (such as
moving without bumping into an object, approaching an object to grasp it etc.),
testing these on real robots to bring together the sensory and the motor aspects,
and afterwards moving on to more complex behaviors.

The architecture devised to design such control systems was called the sub-
sumption architecture. The central idea of the subsumption architecture was
to organize behaviors which all receive sensory input into a hierarchy of levels,
with the behaviors higher up the hierarchy either inhibiting or stimulating the
simpler ones (Brooks, 1986). This simple architecture allowed the construction
of complex behavior from simpler components. Examples for such behavior is
navigating a cluttered office area without bumping into obstacles or, on the
more complex side, collecting the empty bottles on the desks in an office space
(Brooks, 1990). The coupling of the agent through sensory-motor loops to the
environment, instead of creating elaborate plans from a world model, was found
to be one of the key ingredients for creating agents which can react to their
environment in real time. This led to the now well-known principle that “The
world is its own best model” (Brooks, 1991). This principle, one of the most
concise statements of situatedness, has to be understood as stating a contrast
between simple robots in continuous interaction with their environment and the
robotic agents which relied heavily on exact world models in AI, especially in
robotics.

Most important of Brooks’ achievements is his redirecting AI research from
isolated symbolic problem solvers to the concrete aspects of sensing and act-
ing. With Brooks’ work, one can diagnose a turn to the simple-but-complete
approach to agent design of cybernetics, but without the extensive control sys-
tem vocabulary and the design methodology belonging to it. Simplicity here
refers, as explained above, to the focus on tasks which do not involve complex
symbol-processing capabilities such as problem solving, but instead are con-
cerned with apparently basic embodied capabilities which are in fact difficult
because they have to cope with noisy and dynamic environments. In addition,
Brooks presents a clear future direction for AI research by coupling his work to
the more epistemic concerns of the situated approaches by presenting his work in
the context of a physical grounding hypothesis, which states that “only through
a physical grounding can any internal symbolic or other system find a place to
bottom out, and give ‘meaning’ to the processing going on within the system”
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(Brooks, 1991, p.15). Although the claim of embodied AI has sometimes been
explained or perceived as a rejection of all kinds of representation mechanisms,
the real core of the enterprise should be seen as the grounding project, which en-
compasses understanding all kinds of intelligence, including those concentrated
on by cognitivist AI, as stemming from embodied capacities.

The contrast of functional vs. task-level decomposition is an important one,
as it rises out of the differing concerns of the two approaches. In cognitivist
AI, the aim is to understand individual functional units by building subsystems
cohering to the specification; in embodied AI, a complete agent is taken as the
fundamental unit of work (Arkin, 1998; Maes, 1990; Pfeifer and Scheier, 2001).
A behavior is defined as “a regularity observed in the interaction dynamics
between the characteristics and processes of a system and the characteristics and
processes of an environment” (Steels, 1994); the principle aim is to compose such
behaviors, through a deliberation mechanism, into a control system achieving
more complex behavior.

Another area in which the principles of embodied AI have been applied is
the study of animal behavior and the design of biologically inspired robots to
understand animal intelligence. In the animat approach to AI, complete robotic
agents are built in order to model and thereby understand the behavioral capac-
ities of animals, with a special focus on the adaptive aspects (Dean, 1998). As
(Wilson, 1991) argues, there are three important principles underlying animat
research:

1. Maintaining the realism and whole-ness of the environment so as to avoid
special-purpose solutions

2. Maximizing the physicality of the sensory signals, so as to avoid predefined
symbolic inputs

3. Employing adaptive mechanisms maximally, to minimize the introduction
of new machinery and maximize understanding of adaptation

As these principles make clear, simplicity is one of the driving goals of animat
research. This simplicity is in the service of scientific objectivity, as less knowl-
edge built in leads to more objective models. The risk of making an inscription
error, that is, reading out what was already built in (cf. Section 2.2), is thus low-
ered. Furthermore, as the well-known ant parable of Simon (1969) reminds us,
complex behavior is not always the result of complex structure, but may well
stem from simple behavioral repertoire coupled with a complex environment.
In order to understand such complex behavior through synthetic methods, it is
important to keep the environment in which the artificial agents are tested as
realistic as possible. A good example of the animat approach is that of Webb
(1994), who studies the phonotaxis behavior of the cricket. The cricket females
locate the males by walking or flying toward the calling song the male pro-
duces. The robotic model by Webb (1994) makes use of simple filters and direct
connections between the sensory channels and motors. The robot was tested
in experimental conditions comparable with those used with crickets, and was
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able to demonstrate a number of key effects that occur also in experiments with
crickets, such as phonotaxis, recognition of the ideal syllable rate, and choosing
one sound source despite the existence of multiple sources. Webb (1994) con-
cludes that “the cricket’s response can plausibly be explained by a combination
of slow auditory neural response (effective low pass filtering) and temporal sum-
mation in motor neuron response (effective high pass filtering)” (p.51). Another
example is that of John et al. (2006), who built a robotic model of the visual
discrimination performance of chicken. The robot used a simple similarity-based
learning mechanism to acquire the correct reaction to the stimuli presented in
a Skinner box. The robot was then tested in the same environment with the
chicken. Despite the simplicity of the computational mechanism, and the ab-
sence of traditional perceptual filtering and representational mechanisms, the
robot achieved very similar results to the chicken. It also displayed the same
difference in learning speed with stimuli of different dimensions.

3.1.1 Physical coupling instead of representation

One desirable result of task-level decomposition is that the focus of the analysis
of a complex, context-dependent and goal-directed behavior is not the control
units inside the agent (such as an internal map, a goal database, representational
libraries etc.), but the possible couplings with the environment which would lead
to the emergence of the desired behavior. An alternative approach that takes
this idea seriously and aims to replace the traditional talk about representations
and algorithms with the temporal dynamics of continuous systems and agent-
environment coupling is the dynamic systems approach (Port and van Gelder,
1995). In this approach, intelligent agents are described in terms of a differential
function of the variables of the environmental interaction in which they engage
and their internal states (Beer, 1995). An interesting example of a dynamical
model of interaction is a model of the A-not-B error well-known in developmental
psychology. The A-not-B error is made by 7-12 month old infants who are
instructed to reach for an object in one of two opaque containers. The object
is placed in one of the containers while the child observes. Once the child
has learned reaching the first container to pick the object, in a test trial, the
object is placed in the second one, in clear view of the infant. The majority
of children will still reach for the first container to pick the object. Instead of
the traditional theory of immaturity of object permanence, Thelen et al. (2001)
created a model based on a movement planning field with two attractors. The
properties of these attractors were modulated according to two external inputs,
specifying the visual appearance of the field and the visual cue used to draw
the infant’s attention, and an internal input from a one-dimensional memory
field. The movement planning field, like a surface which has two holes in it
towards which the surface bends, is shaped according to these input values, and
the depth of the attractors is changed according to the current visual input
and memory. Thelen et al. (2001) show that the assumption of an immature
goal-directed reaching system is enough to reproduce the A-not-B error with the
contextual effects which cannot be accounted for by the traditional approaches.
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As it can be seen from this example, the main distinguishing features of
the dynamic systems approach are the mechanics of change and adaptation,
and the role this mechanics serves in explanation: “Here the explanatory focus
is on the structure of the space of possible trajectories and the internal and
external forces that shape the particular trajectory that unfolds rather than the
physical nature of the underlying mechanisms that instantiate this dynamics”
(Beer, 2000). Nevertheless, there is the problem of how such a dynamic system
is to be designed, and why a certain kind of task decomposition is to be favored,
compared to the others. This problem has been studied in further attempts to
create dynamic systems, especially the evolutionary approaches.

3.1.2 Minimally cognitive behavior

One aim common to many embodied agents approaches is the creation of au-
tonomous agents that display “minimally cognitive behavior”. As it was already
mentioned, the aim of embodied AI is generally to create complete agents, that
is, agents which can autonomously function in an environment, and adapt to
changes in the environment and in its own states. Instead of dividing such an
agent into serial modules (the SMPA architecture), complexity is achieved start-
ing with simple but complete agents(cf. Section 3.1 above). These simple agents
are minimally cognitive in that, although their sensory-motor capabilities are
limited and the tasks they have to carry out rather toy-like, they are never-
theless perfectly adapted to these simple tasks and serve as starting points for
more complex forms. One of the principle reasons for using simple mechanisms
and behaviors is to enable as little knowledge as possible to be built into an
agent. This is called the machinery parsimony principle by Agre (1995). The
machinery parsimony principle allows the analysis of the task dynamics inde-
pendent of the prejudices of the designer, and leads to more objective models
of phenomena.

Genetic algorithms are one of the most popular methods for studying em-
bodied intelligence with minimal prior assumptions. Originally proposed by
Holland (1975), genetic algorithms are based on a computational analogy to the
biological process of evolution, which consists of the genetic encoding of traits
and the transmission of these traits to offspring (heredity), chance mutations
in the transmitted genetic material (variation), and the evolutionary selection
of the successful individuals from a population for further reproduction (selec-
tion). What is encoded in the hereditary material in the computer simulations
is generally a neural network (Harvey et al., 2005), but even hardware can be
evolved using genetic algorithms (Thompson, 1998). Also, the environment does
not have to be simulated; for example, Floreano and Mondada (1996) evolved
neural network controllers for a Khepera robot on a physical setup. Neural net-
works designed through artificial evolution embody dynamic systems, and are
generally not assumed to have any similarities to biological systems. In addi-
tion, the biological nature of artificial evolution does not have to be stressed;
genetic algorithms can also be seen as undirected incremental search in a big
search space (Harvey et al., 1997).
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An interesting example of work on evolutionary algorithms which displays
the most significant features of this kind of work is that of Izquierdo et al. (2008).
Learning in biological systems and artificial neural networks is traditionally seen
as the modulation of the connection strengths between neurons according to
error signals. Izquierdo et al. (2008) argue, based on recent research into natural
and artificial learning, that there are other mechanisms occurring over varying
timescales which are also responsible for learning. Building on previous work
which achieved simple learning without synaptic plasticity (Phattanasri et al.,
2007), the authors pick the behavior of a worm as the target of their model.
This worm (C. elegans) learns at which temperature value it had received ample
bacteria as food source, and moves to that temperature when it has to search for
food. The structure and behavioral repertoire of the network is relatively simple.
The network consists of five neurons, one of which is the output (mouth) neuron.
Two inputs specify the temperature and the food situation. The connection
strengths between the nodes cannot be changed during the lifetime of one agent;
they are constant, and are passed on with occasional mutations to the offspring.
The mouth neuron specifies whether the mouth of the worm is open or not. The
selection criterion is whether the mouth is opened in the testing phase at the
temperatures at which they were kept (with food) in the training phase. The
most successful agents achieve 97% correct in testing trials. These agents evolve
finite state machines which can handle continuous values, what the authors call
“continuous state machines”. The individual states in these state machines
are like infinite tapes on which the networks oscillate as long as there are no
perturbations. Once the environmental conditions change, however, the network
changes from one such state to another.

As this example shows, the most important advantage of using genetic al-
gorithms is that they allow minimal cognition with minimal knowledge built
in. The evolved dynamics is sometimes very counterintuitive and interesting
on its own right.1 The main problem with evolutionary algorithms, however, is
the simplicity of the setups. Such simplicity is necessary due to the computa-
tional requirements of artificial evolution simulations on the one hand, and the
controllability of the evolutionary process on the other. For the populations to
converge on a solution, the fitness function has to be precisely controlled and,
if more complex behavior is targeted, progressively changed. The designer has
to cope with a different kind of complexity, in that the fitness function has to
account for all aspects of the desired outcome. Another problem with evolu-
tionary methods is that they allow only limited application of and comparisons
with well-known psychological methods. When the centrality of psychological
methods for cognitive science is considered, this aspect proves to be a crucial
shortcoming.

1In the following chapter, applications of the genetic algorithms to agent communication
will be reviewed; multi-agents setups are among the domains in which genetic algorithms have
delivered their most interesting results.
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3.1.3 Embodiment as scientific principle and explanatory
construct

The above explained directions of research laid the foundation of what Beer
(2009) calls the SED approach for situated, embodied and dynamical ap-
proaches. One of the most important commonalities among these approaches is
the significance attributed to intelligent beings being bodies in a concrete envi-
ronment instead of disembodied processing mechanisms. This property, called
embodiment in a scientific context, serves both as a research guideline and an
explanatory construct. As a research guideline, as it was mentioned above,
embodiment places the scientific value of AI agents on their ability to func-
tion in real environments with complex sensory-motor contingencies. Cognition
becomes not a matter of transforming complex logical structures, but of coor-
dinating a physical body; this is the methodical counterpart of the recognition
that perception and motor control are just as complicated as other aspects of
cognition and are different aspects of the same union of capacities.

As an explanatory construct, the concept of embodiment is utilized to de-
scribe the various levels at which the coupling of the agent with the environment
leads to intelligent behavior. Examples are how a certain kind of tuna fish uses
the currents and vortexes in the water to swim in a way that would be impossi-
ble with its own muscles, or how baseball players can catch high flying balls by
coordinating their running speed so that the ball looks to them not as curving
down but appears to follow a straight line (Clark, 1999). A classic synthetic
example of the use of embodiment to replace computation is by Schmitz et al.
(2001). When a simulated model of a hexapod robot was implemented on a
physical robot, it was realized that the interaction with the environment could
be used to simplify the computations needed within the agent. Specifically, the
change of stress on the joints of the legs of the robot when one foot was raised
made a set of sensors and related computations unnecessary. This insight into
an important aspect of the behavior of the locust was made possible by the
availability of an embodied model.

These are simple examples of the use of body-environment coupling to ei-
ther engage in acts which would have been impossible otherwise (in the case
of the tuna fish), or simplify the computational load radically (in the case of
the baseball player). Such cases of coupling serve to demonstrate the role of
the body in intelligence in a further and more significant extent, namely as the
last context in which all activities are grounded. The human being exists in
a physical situation through its body, and this situation is the context which
determines the possibilities to act and socially engage with other beings (Gibbs,
2006). Therefore, what has to be studied is not the architecture of the disem-
bodied processing mechanism, but the dynamics which arises out of the coupling
of an agent with the situation at many different levels. The first of these levels
is the simple sensory-motor level, of which – natural and synthetic – examples
were given above.

How the low-level body-environment coupling can lead to the complex ca-
pacities of the human beings is one of the most important research projects of
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the situated approach. This project is generally called the grounding project,
as its aim is to understand the higher-level capacities as a natural extension of
the embodied capacities (Brooks, 1990). The core idea of the grounding project
is that the concrete situation, understood from the perspective of the human
being, and made possible by the bodily existence of the same, is the primary
object to be studied, if intelligent and meaningful human existence is to be un-
derstood. This is the idea of situatedness, which will be studied in the next
section.

The most important problem that has to be solved by the grounding project
is moving from the concrete and temporally coupled activities – of which bodily
activities are the prime example – to more abstract and temporally extended
ones. These activities are those which involve the use of representational re-
sources, applying them in different contexts, learning new ones, and creating
new ones if necessary. What differentiates these activities from the first kind is
in the first place their being embedded in a wide-ranging social and institutional
setting. Clark (1997) points this out on the example of a complex social activity
such as ship navigation:

The mature cognitive competencies which we identify as mind and
intellect may thus be more like ship navigation than capacities of
the bare biological brain. Ship navigation emerges from the well-
orchestrated adaptation of an extended complex system comprising
individuals, instruments, and practices. Much of what we commonly
identify as our mental capacities may likewise turn out to be proper-
ties of the wider, environmentally extended systems of which human
brains are just one (important) part. (p. 214)

What makes the social and institutional setting possible in the first place is
language; the reasons for this primacy, how language serves to augment cogni-
tion and how it can be understood using synthetic models will be discussed in
Section 3.3.

In the embodied AI and cognitive science literature, the biological roots of
the idea of embodiment are stressed at various levels. Whereas it serves as
an inspiration for the behavior-based approaches to build complete autonomous
agents which receive raw sensory data and have physical bodies (Maes, 1993), for
more biologically-oriented approaches, biological argumentation leads to equat-
ing life with cognition. Such work is inspired primarily by Maturana and Varela
(1980), who argued that the defining feature of living beings is autopoiesis, i.e.
the capacity to produce oneself. What is called “the enactive approach” tries
to understand cognition by basing on this definition of life, equating life so de-
fined with cognition, and building minimal living systems to compile a library
of autopoietic processes, building progressively more cognitive systems from the
ground up (Bourgine and Stewart, 2004).
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3.2 Situated approaches

In contrast to the embodied approaches in AI, situated approaches to cognition
take a top-down view and analyze human behavior in daily situations and try
to understand the emergence of meaning and structure. This approach takes
its inspiration from the philosophical alternatives to the empiricist/rationalist
orthodoxy, discussed in Section 2.4, but at the same tries to maintain a cognitive
orientation, in that the focus is on the representational capacities of human
beings, or rather communities in their concrete situations.

In one of the earliest studies in the situated paradigm, Agre and Chapman
(1990) work in an AI framework to question the prevalent idea of plans and offer
an alternative one. The question of structured behavior is a fundamental one
for cognitive science. Traditionally, the source of structured behavior is located
in the head, as it was pointed in Chapter 2, in the form of plans. Plans, in the
traditional view, are serial commands to be executed in order to reach a goal
or achieve a certain state of affairs; this is what Agre and Chapman (1990) call
the plan-as-program view. These plans are created by a central controller, and
then passed on to an executive model which carries out the commands, and in
the case of any problems or contingencies, returns control to the central mod-
ule. The most important problem with such a view of plans is the reliance on a
world model. The execution of a plan takes place in the real world (or whatever
domain the program is functioning in), whereas the creation of the plan is done
using a world model. This leads to all the objects in the environment having to
be specified explicitly in the plan passed on to the execution module. Further-
more, the execution module misses any opportunities in the environment, since
the recognition of these opportunities requires the capabilities of the central
module.2 As an alternative to the plan-as-program view, Agre and Chapman
(1990) propose the plan-as-communication view. Contrasting the way humans
use linguistic resources, such as plans, with the execution of a program, Agre
and Chapman (1990) propose to model activity as arising out of the interac-
tion of a simple machinery with a complex environment constantly in motion,
without internalizing the environment. In essence, their aim is to stay true to
the “The world is its own best model” maxim of Brooks (1991), and unite the
planning and executing aspects of traditional approaches in a system that looks
at the world and sees the necessary steps to be taken.

Agre and Chapman (1990) present two examples of agents that use linguistic
and representational resources in a task setting. The first of these, Pengi, is a
program that plays a computer game called Pengo (Agre and Chapman, 1987).
In this game, the aim of the player is to survive an arena populated with hostile
entities by manipulating pieces in the environment to attack these entities. The
agent built by Agre and Chapman (1987) plays the game using a number of
techniques devised as an alternative to the traditional approaches. One of these
is the use of deictic representations as an alternative to context-independent
representations, which a planner would need to include in the plans it submits

2(Chapman, 1985) also documents practical difficulties with the plan-as-program approach,
especially regarding intractability and combinatorial explosion.
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to the executor in order to identify the correspondence between the objects in
the world model and the real world. These deictic representations are attached,
as markers in the visual system, to indexically and functionally individuated ob-
jects in the game screen. The objects are indexically individuated in that this
labelling depends on the perspective of the agent; if an object is not relevant for
the current situation, it is not labelled. The objects are functionally individu-
ated in that the content of the label is dependent on what the agent is doing
at the moment. There is, for example, a marker for the-bee-i-am-chasing,
which is overlaid on the hostile bee. This marker then directs the behavior of
the agent, and in case this individual bee disappears from view, the marker is
removed. As in the work of Brooks, Agre and Chapman (1990) rely on the
interaction of a simple behavior network with a complex environment for the
emergence of complex behavior3. Behavioral arbitration is achieved through
a hand-coded network of behavioral rules. These rules and their arbitration is
written by the designer as a result of the analysis of the task. Another common-
ality with behavior-based robotics is the already mentioned absence of an inner
world model: “When Pengo needs to know where something is, it doesn’t look
in a database, it looks at the screen”. As it can be seen in the behavior-based
AI examples given above and the example of Pengi, these two aspects, tight
coupling of the agent with the environment and situatedness, are two sides of
the same coin. Together, these two concepts build an alternative explanation
for complex structure in behavior, as contrasted to plans in the head, or inner
world models maintained through representational relationships with the world.

An extension of the plan-as-communication view is Sonja (Chapman, 1991),
which also plays a computer game called Amazon, a very similar game to Pengo.
The aim in this program was to study situated instruction use. Situated instruc-
tions are those given in the course of a social activity in a common situation,
such as playing a cooperative computer game together. Situated instructions
are syntactically simple, because both players possess a common knowledge of
the game. They have to be obeyed in a temporally fitting fashion, because they
are given pertinent to the situation at hand in a certain moment. In their obser-
vation of experienced players who played Amazon together, Agre and Chapman
(1990) recognized that the players relied to a great extent on their common
knowledge of the game, and the possibilities they perceived on the basis of this
common knowledge. For example, in a situation where two choices were avail-
able (two doors, turning left or right etc.), one player could simply say “No!”
to avoid the other continuing with the choice he made, and pick the other one.
This is possible because both players see clearly that there are only two choices.
Another example is where one player commands the other to turn left. Satis-
fying this instruction can take many forms, such as waiting until the next left
turn, first killing an adversary on the right and then going left, or picking a re-
source somewhere else before turning left. All of these actions count as turning
left, despite their completely different flow, because they get to be interpreted

3A similar example which was mentioned in Section 3.1 is the ant which walks on the beach
and creates complex patterns not because it intends do so, but because of the structure of the
beach (Simon, 1969).
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to be turning left based on the perception of the situation. The program built
by Chapman (1991), Sonja, uses instructions given by an instructor to make
decisions and better manage its activities. In doing this, it uses similar methods
to Pengi, such as indexical representations and visual routines. The use of in-
structions is guided by the contingencies of the situation at hand, in that these
instructions are not treated as commands, but as recommendations. Any more
important actions are handled first, before an instruction is processed.

In these and similar studies in the situated paradigm, the practices of people
in shared situations, and their use of symbolic resources in these situations has
been the primary subject matter. The studies mentioned in this chapter, the
breakdown of the cognitivist paradigm, and the alternative philosophical views
to the tradition have led to the status of symbolic communication and symbol
use as they relate to human intelligence and behavior to be reconsidered. What
was questioned primarily were theories of language and symbolic communication
which view it as a means of encoding and exchanging information. According
to this view, as discussed in Chapter 2, the meaning of language derives from
the representations in the participants’ head, and understanding a linguistic
utterance consists of matching it onto an inner representation. In contrast
to the picture depicted by this approach which leaves out the environment,
it has been argued that conversation takes place in a concrete environment
and is dependent on this environment not only as a resource for a limited set
of information. Rather, a situation is an infinite frame of reference; “every
utterance’s situation comprises an indefinite range of possibly relevant features”
(Suchman, 1987, p.60). The situation also figures as a repository for many
things not mentioned in speech: “Our situated use of language, and consequently
language’s significance, presupposes and implies an horizon of things that are
never actually mentioned” (Suchman, 1987, p.60).4

The status of the situation as a repository of possible means of determining
the references and meanings of utterances also serves as an explanation of the
vagueness of language and symbolic communication in general. Vagueness is
traditionally seen as a weakness of human language, and in proposed symbolic
communication schemes, definiteness of formulations is praised and seen as an
advantage. The vagueness of language is not a weakness; it is a central feature
of all mechanisms and resources which require interpretation. The situation is
searched for possible meaningful correspondences with an utterance, and this
search also gives the situation a new form, and makes it possible for the agents
to see new possibilities and chances. This feature of language is shared by

4A field primarily occupied with the constitution of social structures, and how these emerge
through the daily interactions of humans is ethnomethodology. The ethnomethodological
movement was born in part as a reaction to the standard view in the social sciences that
the social scientist had to take the existence of an objective world of social facts or received
norms for granted, and then try to describe human attitudes and actions as a response;
this principle is embodied in Durkheim’s maxim that “the objective reality of social facts is
sociology’s fundamental principle” (Durkheim, 1938). A fundamental starting point of the
ethnomethodological method is replacing the conception of human behavior as reacting to an
objectively given social world with the assumption that “our everyday social practices render
the world publicly available and mutually intelligible” (Suchman, 1987, p.57).
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all resources used in a situated fashion by human beings, e.g. plans: “It is
precisely because our plans are inherently vague – because we can state our
intentions without having to describe the course that our actions will take –
that an intentional vocabulary is so useful for our everyday affairs” (Suchman,
1987, p.38).

If such descriptions of the relationship of language, social communicative
practices, and perceptual situatedness are not supplemented with computational
observations and concepts, it is difficult not to fall back to the traditional method
of building in such descriptions into cognitivist computational examples, or in-
terpret existing systems simply with a different vocabulary. In his analysis of
situated cognition and research in robotics, Clancey (1997) provides an analysis
which shows what kinds of computational methods are necessary for implement-
ing and computationally understanding situatedness, and how cases in which
such methods were at work in collaborative situations has been neglected by
the traditional approaches. Clancey (1997) picks the case study of a group of
people working on the creation of a synthetic paintbrush, documented by Schön
(1978). The first synthetic brush designed does not function properly, and the
inventors go back to studying a natural brush to find out what is essential to the
proper functioning of a brush. At a certain point, one of the inventors recognizes
that the paint is stored in the capillaries between the hairs of the brush, which
leads him to proclaim that “A paintbrush is a kind of pump” (p.207). With
this new way of conceptualizing a paintbrush, the inventors recognize that while
painting, the painter vibrates a brush. This movement corresponds, under the
interpretation of the paint brush as a pump, to pumping the paint out. This
reconceptualization culminates in a general theory of paintbrushes as pumpoids.
According to Schön (1978), this episode of collaborative discovery can be seen
to proceed through three stages

1. A similarity is conceived in terms of the flowing of a liquid substance.

2. New details are perceived and described.

3. An explicit account of the similarity is articulated as a general theory of
pumpoids.

As it is obvious in this example of collaborative thinking and design, there are
certain things in this process which do not match a traditional, description-
based explanation, in which the inventors would perceive the situation, match
this perception with a model, and create descriptions of this model in natural
language for communication. The first of these is that the features of paint-
brushes are not available on themselves, without a certain way of seeing in
which they would come to the foreground: “for example, spaces between the
bristles weren’t even seen as things to be described until the pump metaphor
developed” (Clancey, 1997, p.208). Furthermore, the pump metaphor was not
fixed by a number of features before it was conceived in the context of paint-
brushes, and “[m]ore fundamentally, a pump is reconceived with respect to this
example; it is not a general category that is just instantiated or matched against
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the situation” (Clancey, 1997, p.208). It is therefore logical to see the recon-
ceptualization of the paintbrush as a pump as a coupled perceptual-conceptual
process, where these two different levels are coordinated in a different manner
than before once the similarity between the concrete artefact and the abstract
description is discovered:

In perceiving and saying that one thing, the paintbrush, is an ex-
ample of something else, a pump, we change both how we view
paintbrushes and how we view pumps. Thus, the metaphorical con-
ception is generative of both perceptual features and descriptions.
Indeed, the painters’ experience indicates that the previously artic-
ulated features of these objects are incommensurate at first; all they
have is a sense of similarity (in the seeing) and a sense of discord (in
the saying). The new way of seeing and the tentative way of talking
arose together, but the painters don’t yet have a descriptive model
to explain this relation. (Clancey, 1997, p.209)

Based on this particular observation regarding the role of metaphors in discovery
and the coupling of perceptual and conceptual dynamics, and further examples
displaying the codependence of perception, conceptualization and description,
Clancey (1997) arrives at the following conclusion regarding how meaning is
conceived in a situation:

Not only is meaning contextually determined, but what constitutes a
situation to the observer -the context- is itself partially constructed
within the interpretation process. The meaning of a representation
is not inherent, partially because the representational form itself is
not inherent. Both the perceptual form of the representations and
its meaning can arise together – not serial, not parallel-independent,
but coupled and mutually constraining. (p.203)

Seen in the context of cooperative descriptive modelling, as with the inven-
tors working on the paintbrush, collaborative work on understanding a system
or creating a new one consists of modifying the conceptualizations and percep-
tual categorizations available to the group, arriving at new descriptions which
were not possible with the initial perceptual means shared by the individuals.
In work done on expert systems, the knowledge and performance possessed by
the individuals were stripped from both the perceptual contingencies, the co-
development of perception and conceptualization, and the concrete situations
in which this co-development occured and were formed into what was for the
observer knowledge. Such an abstraction was possible because of the Cartesian
view, according to which information must flow only in one direction, from the
sensory mechanisms to central command, essentially as in the sense-model-plan-
act architecture of traditional systems (see Figure 2.1.1). As an alternative to
this approach, Clancey (1997) argues for what he calls the transactional per-
spective: “Our names for things and what they mean, our theories, and our
conceptions develop in our behavior as we interact with and reperceive what
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we and others have previously said and done [. . . ] the processes of looking,
perceiving, understanding and describing are arising together and shaping each
other” (p.3).

A result of the transactional perspective is a reconsideration of the relation-
ship between representational entities and sensory data. The standard view is
that representations stand in for sensory data. The role of representations is to
reduce the complexity of sensory information, serve recognition of objects and
situations, unite the variances in the data, and filter noise. In this paradigm,
information flows in one direction in an intelligent system, with sensory data
getting more compressed as it becomes more abstract and context-independent,
finally resulting in symbolic representations. Activity is then the result of fur-
ther processing of information from these representations to form plans, and
delivering these plans to an executive module. In the transactional view, the
flow of information is in both directions, with the perception of features in
sensory data, categorization, and the use of names for these objects arising in
parallel processes which constrain and determine each other mutually. Such a
view leads to an alternative vision of what kind of computation is necessary for
realizing systems similar to human capabilities. A necessary condition for real-
izing a transactional system is the coordination of the lower- and higher-level
processes in action; that is, higher-level abstractions should not serve as rigid
forms into which all sensory information has to be fitted somehow, but as means
of variously organizing sensory information.

3.2.1 Psychological evidence on situated cognition

A view outside of the symbol processing paradigm found its way into psychology
and neuroscience initially through the study of mental imagery and action, which
provided evidence for the involvement of circuitry used in perception and motor
action in processes traditionally explained with recourse to abstract symbol
processing. In experiments studying the manipulation of three dimensional
images, Shepard and Metzler (1971) showed that the time it takes to rotate an
imaginary object was proportional to the degree of rotation. This and similar
results (Kosslyn et al., 1979) showing congruities between perceptual processes
and mental procedures led to a response from the proponents of the symbol
processing paradigm, whose main argument was that symbol processing could
explain the same findings with minor modifications, while at the same time
presenting a more general theory of mental processing (Pylyshyn, 1973).

Through further findings, the status of perceptual and motor processes has
been strongly established by now. What Barsalou (2008) calls the study of
grounded cognition has become a very active field in psychology and neuropsy-
chology, with various results corroborating the significance of sensory and motor
capabilities in various task settings. For example, humans find it more difficult
to manipulate string drawings in ways incompatible with their joints (Parsons,
1987). Tucker and Ellis (1998) have set up elaborate experiments in which peo-
ple had to answer yes/no questions on the spatial orientations of kitchen utensils.
Their responses were faster when the presented physical situation supported the
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direction in which they had to press a button. In further experiments, Symes
et al. (2007) demonstrated the existence of “purely physical affordances”, that
is affordances “solely revealed by the physical structure or arrangement of the
object” (p.239). They showed that whether an object presented in a task is
shown in a graspable direction had a significant affect on the response latency
of the subjects.

The field of language comprehension has been a stronghold of the symbol
processing paradigm and one of the traditional subjects of computational models
in this vein. As discussed in the preceding chapter, there is reason to doubt that
language comprehension relies solely on context-free symbols, due to the nature
of certain kinds of utterances which cannot be disambiguated unless experience
with the physical environment is not brought in. Nevertheless, it is possible
to argue that these aspects are also represented in symbolic form in a central
knowledge register, and are fetched when needed. An example for a case in
which such an experience is necessary are the following two sentences, adapted
from Zwaan and Madden (2005):

1. Jack looked across the room to see where the whisper/explosion came
from.

2. Jack looked across the valley to see where the whisper/explosion came
from.

Obviously, the word “whisper” is the suitable choice for the first sentence, and
“explosion” is suitable for the second. In order to come to this conclusion, much
more has to be known then the definitions of the words whisper, explosion, room
and valley.

The question of whether this knowledge is solely of propositional character
or whether traces of perceptual and motor experiences are also relevant has been
studied in psychological experiments. Zwaan et al. (2002) report an experiment
in which subjects read a sentence and then were presented an image, and asked
whether the object in the image was mentioned in the sentence or not. The im-
ages had the object either in a form fitting to the way the object was mentioned
in the sentence (match condition) or not (mismatch condition). The subjects
responded faster and more accurately for the match condition, where e.g. the
picture of an eagle in flight was presented after the sentence “The ranger saw
the eagle in the sky”. In the mismatch condition for the same sentence the
eagle was presented as standing on a rock. For a review of work in this direc-
tion, see Zwaan and Madden (2005). As these studies demonstrate, the tools of
traditional psychological research have been successfully adapted to study the
situated character of human intelligence. One critical aspect is that the social
aspect is only derivatively included in these studies, using scenarios including
other people or utterances from third parties.
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3.3 Situated Representations

From the perspective of situated cognitive science, it has become clear not only
that language has a primary role in the organization of human intelligent ac-
tivity, but also that the converse is true, namely that embodied human activity
and the human organized world have an important role in the grounding of
language and its efficient use. The human ability to represent is tightly coupled
with language and how language is used in meaningful situations. The situated-
ness of representations used by humans therefore refers to two aspects that bind
together these representations: language is grounded in concrete and meaning-
ful situations in which humans take part, and the representations humans use
in all other interactions are in turn rooted in language, and are possible only
through language. A weaker version of the second part of this thesis could be
formulated as follows: There are certain capabilities which allow human beings
to use representations, and these capabilities are employed to an equal extent
in both symbolic communication and in the use of private symbols and repre-
sentations. Therefore, it can be said that humans use situated representations
also in thought processes that have traditionally been modelled with context-
independent representations. In the following, the term situated representations
will be used to refer to two things:

• Human representations, which are, as explained above, situated due to
the nature of human cognition.

• Representations in computer models that are situated in the same sense.

It is, however, difficult to envisage criteria for calling an artificial construct
situated, a status derived from living beings. This difficulty is aggravated by
the practice especially in AI research, but also frequent in cognitive science, of
giving the name of a supposed human capacity to a computational process or
structure, and reading back the same name as proof that the two entities are the
same thing; an architectural variant of the inscription error. It will be assumed
in the rest of this text that situated representations in an artificial context are
simply approximations to the human case, and they are principally different
from the human one, with the difference between them being the focal point of
research.

As it was discussed in the preceding chapter, it has been traditionally as-
sumed that public symbols used in communication are understandable by the
communicators by virtue of their having representations in their head onto which
these public symbols can be matched. The situated approach, however, argues
for a parallel between communicated symbols, which are public, and the sym-
bols intelligent beings can use in their own activities, which can be categorized
as private symbol use. If there is to be internal representation use, what is the
role of these symbols? What function do they serve for the agent that can use
them, not only in communication but also for itself?

There are a number of proposals in the situated cognition literature which
have offered an alternative conception of language worth considering here. One



CHAPTER 3. EMBODIED AND SITUATED COGNITIVE SCIENCE 58

of these proposals has been made by Clark (2005, 2006, 1998), who offers a
comprehensive view that links perception, action and attention with language.
The fundamental question Clark tries to answer is what the computational role
of language-based symbols is, and what kind of an adaptive value they confer on
humans and other animals which can learn to use symbols. Taking his sources
from situated cognition, Clark (2006) compares his approach to the cognitivist
conception of language as the transcoding of an inner language (discussed in
Section 1.2), which he dubs the “Pure Translation” view of language (p.370).
As an alternative to this view Clark (1998) defends what he calls the “supra-
communicative view of language”. According to this view, language is not
simply an information stream requiring translation, but a tool which can be used
for environmental restructuring by the individual, “a species of external artefact
whose current adaptive value is partially constituted by its role in re-shaping the
kinds of computational space that our biological brains must negotiate in order
to solve certain types of problems, or to carry out certain complex projects”
(Clark, 1998, p.162).

Symbols, in the form of public constructs of which linguistic symbols are a
subset, are used by humans to create what Clark (2005) calls surrogate situ-
ations: “[W]e may conceive perceptually encountered or recalled symbols and
sentences as acting less like inner data structures, replete with slots and apt
for genuine inner combinatoric action, and more like cheap ways of adding
task-simplifying and attention-reconfiguring structure to the perceptual scene”
(p.240). In this sense, symbolic structures are akin to the tools we use to vi-
sualize complex relations or constructs, such as diagrams, sketches, or simple
plans. These tools are an alternative to the real situations which they come to
represent, in that they relax the temporal restrictions on such real situations,
and decrease the information load by simplifying them and bringing to the fore-
ground only those aspects which are relevant; the sketch of a part of the city,
on which we want to plan a path, has to include only those things which would
help us navigate the area (streets, salient buildings etc.), and not each and every
detail in the street scene. In fact, simpler surrogates are better cognitive aids,
because they omit the distracting details and help us focus on the necessary
aspects. An important feature of such surrogates is that in their use we inter-
act with a situation that we have created and can direct, as compared to the
dynamic settings in which we can control only our own reactions. Therefore, in
the use of surrogates, we have the chance to shape the dynamics of the situation
to our own aims and liking. Furthermore, since we can acquire the use of such
surrogates, these can be transmitted from generation to generation, causing a
cumulative effect, through which existing surrogates lead to more and better
surrogates. Words and sentences, on this view, can be thought of as low-level
surrogates which become a part of a situation, that leads to a reconfiguring
of the perception of the scene based on attention: “Instead of thinking of lin-
guistic encodings as enabling informational integration by acting as a common
format for the outputs of multiple modules, we can think of the whole process
as one not of translation into a unifying representation, but of attention-based
coordination” (p.240).
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The ways such scaffolding can be achieved are manifold. One is by using
words as filters, in that they are attached as discrete labels to associative con-
cepts. This enables computationally enhancing possible operations with these
concepts, and the acquisition of more complex concepts and relationships (Clark,
1998). An example is the case of the chimpanzees which could judge second-
order relationships after training with symbolic tokens, mentioned in Section
1.2. This example can be thought in the more general context of “following tra-
jectories in representational space, and leading others reliably through certain
trajectories” (Clark, 2006, p.372), a necessary capacity for complex problem-
solving skills and socially embedded cognition. Looking at human behavior and
intelligence from a dynamical and distributed perspective, it can be speculated
that language and symbols in general serve to discipline and stabilize dynamic
processes of reason and recall. Words and sentences can thus be used to control
others’, as well as one’s own behavioral coordination. Another capability which
the use of linguistic symbols could lead to is second-order cognitive dynamics,
i.e. capabilities like self-evaluation, self-criticism etc. This kind of thinking is
inherently reliant on the existence of language, and it is safe to bet that other
animals do not have such capabilities, due to their lack of linguistic capabilities
(Clark, 1998, p.177)

The reasons linguistic constructs are highly suitable for such amplification of
cognitive capacities stem from their use in communication, according to Clark
(1998). In order to function properly in communication, public language has to
be shaped into a suitable means of exchanging ideas; this involves re-formulating,
inspecting, and criticizing linguistic statements. Such detailed and repeated use
and moulding of language leads to a vocabulary whose words can be used in
a minimally context-dependent manner. This is a direct result of the need to
keep the vocabulary to a manageable size, which in turn leads to the words
being reused in different situations. These are properties which would make a
representational tool ideal also for the individual needs:

By ‘freezing’ our own thoughts in the memorable, context-resistant
and modality-transcending format of a sentence we thus create a
special kind of mental object – an object which is apt for scrutiny
from multiple different cognitive angles, which is not doomed to alter
or change every time we are exposed to new inputs or information,
and which fixes the ideas at a fairly high level of abstraction from the
idiosyncratic details of their proximal origins in sensory input. Such
a mental object is, I suggest, ideally suited to figure in the evaluative,
critical and tightly focused operations distinction of second-order
cognition (p. 178).

Clancey (1997), in his discussion of the transactional perspective, draws a
number of conclusions regarding the role of symbols in human cognition, as a
result of his transactional approach. These do not amount to a theory or ac-
count of the role of language in human thinking, but offer a similar appraisal
of the role of symbols in a computational characterization of the human mental
apparatus. In this scheme, conceptualization, which is the basis for symbols and
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deliberation, takes on a specific role: “conceptualization is, broadly speaking,
a means for an agent to coordinate behavior without being bound to reflexes
or the history of conditioned learning” (p. 172). In order to achieve this role,
conceptualization has to build on the mechanisms that are used by the agent
for sensory-motor coordination: “reasoning involves coordinating ideas in the
physical, behavioral sense of holding categorizations active and categorizing
their relations [. . . ] [A]rchitectures based on stored descriptions have limited
ability to interpret, improvise, analogize, or adapt because the understanding
of conceptual models in people is based on and consists of the experience of
physical coordination” (p.197). The role of language, especially in the common
dialogue situations described above, is then one of bringing together different
aspects of an experience, by allowing these conceptualizations to be consciously
deliberated, and also discussed with others: “In some sense, the verbalizing pro-
cess holds active disparate experiences originally associated by only a superficial
perceiving-as-coupling (of image, sound, gesture, odor, etc.), allowing a more
abstract conceptualization to be constructed (a theory of pumpoids).” (p.210).

A theoretical proposal regarding how the process of language comprehension
can be understood has been made by Barsalou (1999), who first delineates the
established view of language comprehension as the creation of a mental model
consisting of amodal representations from a text. This model afterwards serves
as an archival memory against which conclusions can be drawn or questions can
be answered. As the discussions in the previous chapters have shown, method-
ologies which rely on amodal symbols face numerous theoretical and computa-
tional difficulties. The alternative to the amodal representations view proposed
by Barsalou (1999) takes language comprehension to be preparation for situated
action. Before discussing such a function of language, Barsalou (1999) reminds
us of the modern biases we have regarding the function of language. Three such
biases are of primary importance; first of all, we focus, in our understanding of
language comprehension, on the form it is put to use in modern education; tradi-
tionally, teachers stand in front of the class and impart knowledge to them using
language. In this picture of knowledge transfer, language serves as a container
to pack knowledge, which then gets stored in the heads of the students. The sec-
ond kind of bias comes from the self-understanding of the scientists themselves,
who take pride in their ability to store and recall information acquired through
language. The third kind of bias concerns the ease of studying language com-
prehension in the form of the construction of mental models. It is easy to devise
experiments where subjects are presented with texts and then asked questions,
whereas it is relatively difficult to construct experiments which break out of this
paradigm, and bring together action and textual representation, especially in a
laboratory environment.

One way of getting rid of these biases is keeping in mind the evolutionary re-
quirements for language; this is exactly what Barsalou (1999) does, who argues
that language evolved not to impart abstract knowledge, but to coordinate the
actions of groups, such as hunters. Language comprehension would in such a
scenario serve indexing, i.e. relating linguistic constructs to real-world entities.
Indexing can take place in various time frames, and with different relations to
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the situations in which entities are to be indexed. The situation and the en-
tities can be present, as in immediate indexing, where the conversationalists
simultaneously view the physical situation under discussion. In displaced in-
dexing on actual experience, conversationalists discuss an absent situation that
they viewed earlier. When the topic of the discussion is an experience that is
similar but not identical to what the conversatiolanists went through, displaced
indexing on similar experience takes place. Finally, displaced indexing on com-
ponential experience refers to individuals discussing a situation which they have
not experienced as a whole but whose components have been experienced in pre-
vious situations. Displaced indexing does not necessarily have to refer to the
past, it can also refer to situations in the future:

The purpose of communication is not simply to archive information
about the world and the events that occur in it, the purpose is to
coordinate the actions of multiple agents toward achieving goals in
specific situations. Thus the fact that language is often about dis-
placed situations does not pose a problem for indexical and situated
views of language. To the contrary, the whole point of such lan-
guage is typically to optimize situated action later as the envisioned
situations become immediate.

Barsalou (1998) proposes a theory for modelling such indexicalizing, which re-
lies on the simulation of perceptual experiences. Independent of the precise
mechanism through which such connection of the linguistic symbols to entities
in situations takes place, the points argued by Barsalou make clear that the
most important issue that has to be tackled by situated theories of linguistic
communication is the processing of distant situations, either in the future or the
past. Another important contribution of the criticisms and alternative model
presented by Barsalou (1999, 1998) is that in his work, the situated, social and
cognitive aspects are brought together, regardless of the traditional divisions
between the various approaches.

One last theory worth mentioning in this context is that of Tomasello (2003),
who, basing on extensive experimental work with infants and apes, argues that
human babies are distinguished by their ability to engage in activities involv-
ing varying degrees of joint attention, such as following an adult’s attention,
or directing an adult’s attention intentionally. There is a very strong temporal
correlation between infants’ ability to engage in such joint attentional activi-
ties and the emergence of language comprehension and interaction (Carpenter
et al., 1998b). Tomasello (2003) argues that language, especially in its early
stages, should be understood as an activity of sharing and directing attention.
It further results from the understanding the children have of the others as
intentional agents which can pay attention to the shared entities in the environ-
ment. Construed this way, language becomes an act of sharing attentional focus
with agents which are assumed to have similar perspectives as the child itself:
“The infant’s first production of language is nothing other than her emerging
ability to express her own communicative intention that other persons join her
in attending to something” (Tomasello, 2003, p.50).
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Language, which arises on the basis of such capacities, then takes on a
cognitive function due to the properties linguistic symbols and structured rep-
resentations attain in their function as intersubjective tools. These properties
derive from the fact that the speaker has to consider not only his or her own
perspective, but the myriad ways the others can conceptualize a given situation:

The intersubjective and perspectival nature of linguistic symbols
thus creates a clear break with straightforward perceptual or senso-
rimotor cognitive representations. It removes them to a very large
extent from the perceptual situation at hand, and in ways much
more profound than the fact that they can stand for physically ab-
sent objects and events (and other simple forms of spatiotemporal
displacement). Rather, the intersubjective and perspectival nature
of linguistic symbols actually undermines the whole concept of a
perceptual situation, by layering on top of it the multitudinous and
multifarious perspectives that are communicatively possible for those
of us who share a certain set of linguistic symbols. (p. 53)

The issue of how symbol use and linguistic proficiency arise are also discussed
by Tomasello (2000); his views on these topics will be presented in the next
chapter in the context of evolution of the language capacity.

Embodied AI and cognitive science, in taking proposals like these regarding
the role of language in intelligence and a characterization of language as a com-
munal phenomenon instead of being inherent in the knowledge of the individual,
have created multi-agent models to study the use of symbolic representations.
In the next chapter, these models will be studied, in the light of the lessons
learned from situated interpretations of linguistic communication and symbolic
representations.



Chapter 4

The Dynamics of Symbolic
Communication

The centrality of language for human intelligence, in particular, its role as the
basis of symbolic capacities, have been discussed in Chapter 1, and further elab-
orated in Chapter 2. It has been argued that language, or symbolic communi-
cation as a simpler starting point, has to be studied as a tool used to organize
embodied behavior of communities, a position which would give the symbolic
means used in communication a dual role. Similar observations have led many
in AI, artificial life and related fields to regard the emergence and dynamics of
language as an ideal starting point to study higher level intellectual capacities,
without building in the representational capacities to be explained in the first
place. Research into the origins of linguistic communication deriving from this
conviction on the centrality of communication is being carried out using artifi-
cial agents with comparatively simple processing mechanisms, but embedded in
a perceptual context, and using the communicative capabilities in social situa-
tions. In this chapter, an overview of work on the emergence of language and
symbolic communication will be given. Before that, however, a short discussion
on the current theories of the roots of language and communicative symbol use
will be presented for orientation.

4.1 Approaches to the emergence and evolution
of language

The evolution of the language capacity is a topic very open to speculation and
wild theorizing. Prior to the modern advances in biology, linguistics and com-
putational methods, the topic of the origins of language was partly shunned as
too speculative; so much so that the presentation of papers on this topic were
forbidden at the Société de Linguistique de Paris from 1866 on (Christiansen
and Kirby, 2003). Modern discussions on how language appeared as a cogni-
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tive ability and how it took on the form and the variability we can observe are
informed by the advances especially in linguistics, but many other disciplines
make substantive contributions. This multidisciplinary background is connected
to the relevance of related questions for many fields. One related question is
the cognitive role of language. The relation is due to the simple fact that,
as a cognitive capacity, language capacity has to have certain benefits for the
individual agent for it to survive either through evolution or generational trans-
mission by learning. The nature of mechanisms underlying the linguistic and
symbolic capacity in human cognition can also be added to this combination, be-
cause specifications for processing mechanisms include background assumptions
about the improvements symbolic capacities lead to, and evolutionary paths
these mechanisms might have emerged through.

As it has been made clear in Chapter 1, the focus of the work presented is on
the role of primitive symbol use in cognition. Therefore, a detailed review of the
discussion on the evolution of the whole capacity is not relevant here. Neverthe-
less, an overview will be given for orientation purposes, and to demonstrate the
connection between the positions on the role of language in cognition, how it
evolved, and where the meaning of symbols used with communicative intentions
stems from. This overview will be limited to the accounts from linguistics and
cognitive science, and will not deal with the issues of the evolution of the vocal
tract and other biological & physiological aspects.1

There are a number of common difficulties evolutionary accounts of lan-
guage have to face. One of these is that there is no comparable capacity among
animals. Most of the other complex capacities or organs of humans have anal-
ogous examples in other animals, which presents the possibility of studying
them comparatively. Another important difficulty is that our understanding of
the language capacity is still limited, which leads to insufficient information on
the different components the complete language capacity necessitates. Another
problem with the evolution of communication in general is the survival value
of communication for the individual, as compared to its value for the commu-
nity. A warning signal, for example, has value for the members of a community,
because it helps them flee earlier in case of danger. It does not, however, con-
fer any obvious advantage on the animal which makes this call. It might even
confer a disadvantage to it, because its location is revealed to any possible
predators. The most popular explanation for this discrepancy is to look for a
non-communicative behavior which might be a precursor of the communicative
one, and base an explanation on the specialization of this behavior (cf. Hauser,
1996).

One last difficulty, especially from a Chomskian point of view, is the amount
of knowledge of language that has to be built into the “language organ”. As
it was explained in Chapter 1, the Chomskian approach to the knowledge of
language is to posit an “organ” which converts linguistic input from the envi-
ronment into a “language module”. Since this input is limited in scope, and does

1For an extensive review of research on evolution of the language capacity see Hauser
(1996). For an overview of research on the evolution of speech see Fitch (2000).
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not present the whole variation of the language, the language organ has to pos-
sess a considerable amount of knowledge in order to create a complete language
module. If an evolutionary approach is to be accepted, this knowledge has to be
assumed to appear through evolution. The most significant problem with such
a conclusion is that, to put it succinctly, half a language is no language: the set
of rules which are necessary for the creation of a language module are dependent
on each other, and individual rules cannot function on their own. Chomsky has
been known to be against an evolutionary explanation for the language capacity
due to these reasons, which have led to a conviction that the language capac-
ity is simply too complex for explanation through evolution. Other authors
have extended his position to argue against an adaptivist theory of the evolu-
tion of language capacity. In his statement of the problem reaching beyond the
linguistic domain, but taking it as a starting point, Piattelli-Palmarini (1989)
argues for a nonadaptationist account of the language capacity. In biology, one
form of evolutionary explanation alternative to adaptation is called exaptation.
Exaptation is the shift in use of a behavioral or anatomical trait from the orig-
inal function for which this trait evolved to another one; the classic example
is the birds’ feather, which originally evolved for temperature regulation, but
later came to serve flight. Piattelli-Palmarini (1989) argues that the language
capacity can be explained only through exaptation. The main argument for
this conclusion is that the study of innate grammar has disclosed “many in-
stances of specifity and gratuity in the design of all natural human languages,
but hardly any instance of traits dictated by generic communicative efficiency,
or constraints dictated by the laws of pure logic” (Piattelli-Palmarini, 1989,
p.22).

There are nevertheless approaches to the evolution of the language capacity
which agree with the innativist position on the existence of innate language
capacities, but also argue for an evolutionary basis for these capacities. The
best-known of these approaches is that of Pinker and Bloom (1990), who ar-
gue for an adaptationist account for the evolution of language capacity. Their
argument relies on two main points. The first is the role of natural selection
and adaptation in the emergence of complex, apparently engineered systems.
Pinker and Bloom (1990) argue that even in the case of exaptation, the trait
which serves a new function can evolve to specialize further for the new func-
tion; exaptation is just one more mechanism in the service of adaptation and
not a replacement for it. Exaptation cannot lead to complex, adapted systems
on itself; such systems, such as the eye, can arise only as a result of long and
gradual gradient ascent. The second point is the status of language as a complex
capacity which has been evolved for the communication of propositional struc-
tures over a serial channel. Against the central argument of Piattelli-Palmarini
(1989), the authors claim that the innate grammar is primarily a constraint
satisfaction device which has to meet certain tradeoffs, and the arbitrariness
which one sees in language is a result of this set of tradeoffs.

Interestingly, Chomsky has also reversed his position on this issue and re-
cently argued that language might have evolved through selection. Hauser,
Chomsky & Fitch (2002) propose to think of the language capacity as consist-
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ing of two components: “faculty of language - broad” (flb) and “faculty of
language - narrow” (fln). flb is a combination of an internal computation sys-
tem (the fln) and two more organism-internal systems, the sensory-motor and
conceptual-intentional systems. fln, on the other hand, is the abstract linguis-
tic computational system alone, and one of its core properties is recursion, which
enables it to take a finite set of elements and yield an infinite array of discrete
expressions. The central claim of Hauser et al. (2002) is that the fln is the only
uniquely human component of the language capacity, and an evolutionary ex-
planation for it is the grand scientific problem faced by adaptationists. The flb,
however, is built on similar capacities in other animals; many capacities that are
part of the flb, except for the ones which belong also in the fln, are based on
mechanisms shared with nonhuman animals. The scientific program proposed
by Hauser et al. (2002) aims to understand the evolution of both flb and fln
through comparative studies which delineate these two modules and point at
possible central mechanisms which might have emerged through mutations. As
an example contribution to such a program, they present evidence from anthro-
pology and comparative psychology to support their claim that the flb has
counterparts among animals. In a direct response to the position presented by
Hauser et al. (2002), Pinker and Jackendoff (2005) argue for specializations at
all levels in the human cognitive apparatus concerning the language capacity.
Their conclusion is that the distinction between the two modules fln and flb
is not tenable, not only due to the specializations in different parts specific to
humans and honed to language production, but also due to the difficulty of
specifying a minimal core of language.

Another attempt at a theory of the evolutionary appearance of the language
capacity is that of Derek Bickerton. Bickerton (1990) builds on his earlier re-
search into pidgins, simple languages lacking complex grammatical structure
and including sentences only a few words long, which arise when two commu-
nities without a common language have to communicate. When a pidgin is
acquired by children, a refinement in structure and usage is observed, whereby
the language becomes a creole. Bickerton (1990) argues that the commonalities
between pidgin languages, the language of two-year-old children, and signing
chimpanzees points to a primitive form of communication which preceded the
full-blown human languages in the evolutionary time line; he calls such a lan-
guage a “protolanguage”. Through the stipulation of such a step between human
language and the nonexistence of communication, the task of the development
of language is simplified; nevertheless, the step is a considerable one. This step
is supposed to have happened through a single macromutation. The require-
ment for such a big step is the most criticized aspect of the theory of Bickerton
(1990) (see e.g. Hauser, 1996). As a response to these criticisms, Bickerton
(2003) modified his approach, and argued for the separate evolution of three
capacities relevant to language: modality (i.e. speech), symbol use and struc-
ture. Whereas symbol use is a cultural phenomenon, modality and structure are
results of evolution. Structure, i.e. syntax, has also evolved, but not with a sin-
gle macromutation, as Bickerton earlier proposed. Instead, syntax is theorized
to be a result of a number of simple mechanisms which evolved to serve other



CHAPTER 4. THE DYNAMICS OF SYMBOLIC COMMUNICATION 67

functions, but were then utilized to make communication more successful.2

All these approaches have one thing in common: they are based on the
Chomskian view that the language capacity is unique, and is served by cogni-
tive machinery that is purpose-specific and has a syntactic core. The Chomskian
view of language, as explained in Section 1.2, has laid the foundation of early
cognitive science, and is the most widely discussed and cited paradigm for un-
derstanding language in the cognitive scientific circles. Such an overwhelming
presence can create the impression that the innativist/generative approach is
without scientific opposition and alternatives, but this impression is not entirely
true, in that there are still many researchers who argue for the acquisition and
processing of language through more general-purpose learning mechanisms. One
of these people is (Tomasello, 2000), whose approach to the role of language and
socially shared symbols was discussed in the previous chapter. In his review of
Pinker (1994), one of the most influential and widely-read works arguing for
innativist and generative approaches to language, Tomasello (1995) arrays a
number of criticisms against what he argues to be the two main features of this
approach. The first of these features is the syntactic nature of the stipulated
structures responsible for language production. Such syntactic structures do not
depend on meaning and their formulation is mainly driven by considerations of
mathematical elegance. The second feature is that “all of these universals are
described in linguistically specific terms such that it is very difficult to relate
them to cognition in other psychological domains [. . . ] Thus, in this view, noun
and verb have nothing to do with concepts of object and action, but are defined
solely in terms of their syntactic distributions” (p. 136).

One of the central tenets of the innativist position is, as the name implies, the
availability of innate syntactical capacities, and the crucial role of these capaci-
ties in the acquisition of language. It is assumed that the acquisition of language
is to be traced back to the availability of rule-based grammar to children, which
is essentially equivalent to the grammar possessed by the adults in terms of
its categories, such as subject or verb. Tomasello (2000) presents copious ex-
perimental evidence which undermines this assumption, called the continuity
assumption (Pinker, 1984). Proof for the continuity assumption usually takes
the form of negative arguments, as in the poverty of the stimulus argument:
The linguistic input received by the child during the acquisition phase is too
limited, and it is impossible for a child to arrive, without innate knowledge, at
the grown-up language capacity, on the basis of this input. The essence of this
kind of argument for innate grammar knowledge is summarized by Tomasello
(2000) as “You can’t get there from here” (p. 235). The evidence presented by
Tomasello (2000) contradicting the continuity assumption is based on observa-
tional and experimental studies. In the observational studies, young children of
up to 3 years of age were followed in their daily life and their utterances were
recorded. An analysis of data collected this way across a number of languages
has shown two things. First of all, there is no evidence of abstract syntactic

2See Jackendoff (1999) for a preliminary attempt at listing possible steps in the evolution
of syntactic capacity in incremental steps as proposed by Bickerton (2003).
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categories in the linguistic behavior of children of this age; for example, when
young children learn a verb, they rarely ever use it in a different tense or person
from what they initially memorize, and their productions revolve around con-
crete items and structures. Second, each of these concrete structures undergoes
its own development; when a child learns “you kiss” in addition to “I kiss”, this
new structure is not carried over to “you think” as an extension of “I think”.
This pattern persists until approximately the third year of life.

Experimental evidence supports such observations even to a further extent.
For example, in experiments in which artificial words were used as tracers, it
was found out that young children did not generalize intransitive application of
verbs they hear from adults (“This is called meeking”) to equivalent transitive
forms (“She’s meeking the car”) until three years of age. They also treated
nouns and verbs differently, freely combining nouns, but hardly combining the
verbs in different ways than they heard (Tomasello et al., 1997). Traditionally,
such results get explained away with claims of performance limitations; how-
ever, in these controlled experiments, it was shown that the children who could
not produce transitive forms of the verbs they heard could use new nouns pro-
ductively (ruling out reluctance to use new words), performed conservatively
when tested for comprehension of transitive forms of the same verbs (ruling out
production factors), and used transitive forms if that was the form in which
they first heard the verbs get used by adults. Tomasello (2000) argues that
these findings, coupled with the absence of positive experimental support for
the continuity assumption, undermine the idea that children possess a complete
syntactic competence. According to Tomasello (2000), the specific linguistic de-
velopment path of children growing up in English-speaking environments can be
explained in terms of the Verb Island Hypothesis, which claims that “children’s
early language is organized and structured totally around individual verbs and
other predicative terms [. . . ] the 2-year-old child’s syntactic competence is com-
prised totally of verb-specific constructions with open nominal slots” (p.214).

The alternative proposed by Tomasello (2000) to the innativist position is
based on cognitive-functional linguistics (see also Tomasello, 1998). This ap-
proach to linguistic theory argues that the acquisition of language is achieved
through the use of general-purpose cognitive mechanisms, and not an innate
language organ exclusively for language. The capacities of the adult, which are
a result of such an acquisition process, are also theorized to be of a different
character than the set of grammatical rules and transformational capabilities
assumed by the generative approach. Instead of an elegant mathematical core,
mastery of various linguistic symbols and constructional schemas is believed to
lead to adult linguistic competence. Highly canonical aspects result from the
hierarchical organization of these schemas, but otherwise, there is no distinction
between the core of linguistic competence and peripheries, or a mathematically
complete competence and performance which deviates from this completeness:

A plausible way to think of mature linguistic competence, then, is
as a structured inventory of constructions, some of which are similar
to many others and so reside in a more core-like center, and others
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of which connect to very few other constructions (and in different
ways) and so reside more towards the periphery. The proposal would
thus be that the child initially learns individual, item-based linguis-
tic constructions (e.g. verb island constructions), and if there are
patterns to be discerned among these different item-based construc-
tions in adult usage, she could then make abstractions and create
inheritance hierarchies of constructions. (Tomasello, 2000)

The ability to operate with such symbols and schemas is derived from general
cognitive abilities which might take on special characteristics in the domain
of linguistic communication. The verb islands discussed above are a develop-
mentally early example of linguistic schemas. As Tomasello (2000) points out,
the early generativist arguments for the impossibility of learning language with-
out special-purpose mechanisms are directed against outdated learning concepts
from the 1950s, like simple associative learning. Modern cognitive-functional lin-
guistics, on the other hand, can point to much more complicated general-purpose
mechanisms, such as analogy making and structural mapping.

As it was argued at the beginning of this chapter, theories on the evolution
of the language capacity are usually extensions of the theories on the process-
ing of language. In the case of Tomasello, since he believes that the language
capacity is a result of various general-purpose cognitive mechanisms, it is to
be expected that he argues for continuity among the animals (as he does in
Tomasello, 1995). Despite such continuity, there should be a crucial difference
which sets humans apart from other animals, the “small difference that made a
big difference” (Tomasello et al., 2005, p.690). According to Tomasello (2000),
this difference lies in what he calls cultural learning, which is a kind of imitation
learning. One sort of imitation learning, what Tomasello (2000) calls mimicking,
involves solely the repetition of what the adult says or does, with little or no
understanding of the particular aim behind the action or utterance. Cultural
learning, on the other hand, requires an understanding of the purpose or func-
tion of the behavior to be imitated. Experimental evidence for such a capacity
in young children includes 18-month-old infants reproducing intentional action
they saw an adult attempting to perform, even if that action was not carried
through to completion (Meltzoff, 1995), or 16-month-old infants reproducing
the intentional, goal-directed actions of an adult, but not the accidental ones
(Carpenter et al., 1998a). One other well-known example of the imitation of
intentional action was studied in an experiment by Gergely et al. (2002), where
14-month-old infants were shown a man touching his head to the top of a box
to turn on a light. In half of the cases the adult had his hands occupied, so
that he could not touch the box with them, whereas in the other half they were
free. When it was their turn, the infants who saw the hands-free demonstration
bent over to turn on the light with their heads more often than the others.
These children apparently believed that if the adult touched the box with his
head although his hands were free, there must have been a reason for it. The
relevance of this capacity to imitate intentional action for language acquisition
derives from the ability of children to recognize, when an utterance such as
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“Look! A clown!” is made by an adult, his intention to point her attention
to a particular object. Such an intention is called a communicative intention
by Tomasello (2000), who further argues that “understanding a communicative
intention means understanding precisely how another person intends to manip-
ulate your attention” (p.238). The acquisition of language takes place when
the child, through the learning mechanisms mentioned above, matches linguis-
tic structures to the roles they play in the communicative intentions of adults.
According to Tomasello (2000), the capacity of young children to learn imita-
tively is “the initial ontogenetic expression of the human organism’s biological
adaptation for culture” (p. 240).3

Since the publication of Tomasello (2000), further experiments with primates
led Tomasello to change his position and propose a different capability as the
distinguishing mark of humans. An example for the experiments which provided
new evidence is one carried out by Call et al. (2004), in which a human gave
an ape food through a hole in a plexiglass wall, but sometimes brought out
a piece of food and either refused to give it to the apes or attempted to give
it to the ape but was unsuccessful. The apes gestured more and left the area
earlier when the human was unwilling than when he was unable, in which case
they sometimes waited patiently. This and similar experiments show that “apes
understand that other have goals and behave toward them persistently, and that
this is governed by what they perceive” (Tomasello et al., 2005, p.685). This is
exactly what was supposed to set human beings apart according to Tomasello
(2000); therefore, something else must be the small difference that makes a big
difference. Tomasello et al. (2005) proposes this difference to be the capacity for
shared intentionality. According to Tomasello et al. (2005), children go through
three stages of social development in their first year of life:

1. Understanding animate action as goal-directed

2. Understanding the pursuit of goals by actors, and the fact that human
beings monitor their actions so that they can recognize when they have
succeeded, and keep on trying until they succeed

3. Understanding how human beings evaluate a situation to decide on actions
to achieve their goals, and choose plans to come closer to these goals

As it was mentioned above, these capabilities pave the way for cultural learning,
i.e. reading adults’ intentions interpreting their actions in terms of these inten-
tions. What sets humans apart is the capability of shared intentionality, which
follows these steps and builds upon them. Shared intentionality is different
from earlier forms of individual intentionality in that it involves participating in
collaborative activities including shared goals and socially coordinated action
plans. The agents have to coordinate not only their own goals, but also the
common goals shared with the others, and the states of the others and how
their attention has to be manipulated in order to align them with the common

3See Tomasello (1999) for an extended discussion of this view point.
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goal and the plan devised to achieve this goal: “Overall, then, collaborative ac-
tivities require both an alignment of self with other in order to form the shared
goal, and also a differentiation of self from other in order to understand and co-
ordinate the differing but complementary roles in the joint intention” (p.681).
Infants start engaging in such collaborative activities at around 14 months of
age. An example is presented by Ross and Lollis (1987), in whose experiments
children of this age played games together with adults. When the adults stopped
participating, the children prompted them to re-engage, and sometimes carried
out their duties for them. Language is one such form of collaborative activity, in
the sense that the symbols have both the aspect of the speaker and the listener,
so that the child has to learn to play both roles. More significant is the further
fact that the joint goal in a communication context is to reorient the listener’s
intentions and attention so that they align with those of the speaker.

As it can be seen clearly from this short overview, according to Tomasello
(2000, 2005), linguistic capabilities are a result of the social and cultural abil-
ities of humans, and not a detached cognitive module. Therefore, in order to
arrive at an evolutionary understanding of the language capacity, we should first
understand how these abilities have arisen:

[S]aying that only humans have language is like saying that only hu-
mans build skyscrapers, when the fact is that only humans (among
primates) build freestanding shelters at all. Language is not basic; it
is derived. It rests on the same underlying cognitive and social skills
that lead infants to point to things and show things to other people
declaratively and informatively, in a way that other primates do not
do, and that lead them to engage in collaborative and joint atten-
tional activities with others of a kind that are also unique among
primates (Tomasello et al., 2005, p.690).

The methodological repercussion of the position presented by Tomasello, and
other positions based on general-purpose mechanisms for language acquisition
and processing in general, would be concentrating on alternative learning mech-
anisms (such as analogy making and structural mapping), language use and
acquisition in shared contexts, and social interaction in common tasks. From
a synthetic perspective, such a research program would present two difficul-
ties. The first of these is the significantly different learning mechanism which
has to be built. Research into analogies and structural mapping is relatively
young, and there are still unresolved problems, especially if a complete agent
perspective from perception to action is taken (as argued in Section 2.1.2). The
second difficulty involves modelling of cooperative activities. Robotic modelling
of cooperation is still in its infancy, and the use of shared representations has
an understanding of cooperation as its precondition. Once there is sufficient
progress in these two areas, however, the direction pointed out by Tomasello
presents a viable alternative to the innativist position that is taken to be the
default one on language acquisition in many areas.
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4.2 Computational models of the dynamics of
communication

As it was explained in the previous chapter, embodied AI shares an under-
standing of the concept of situatedness with the philosophical research into the
embodied nature of human intelligence. Nevertheless, there is still a deep rift
between the conceptual apparatus of the two areas. The main reason for this
rift is the inadequacy of AI models to create representations without falling into
the pit of creating a disembodied inner arena of symbols, and the inadequacy
of theoretical studies to deliver an embodied model of symbol use and linguistic
behavior. Language evolution is at the middle of this rift, trying to reconcile the
embodied intelligence of embodied AI models with the situated descriptions of
human intelligence and linguistic abilities. However, it is at the same time vul-
nerable to the problems that have plagued theories that try to give an account
of symbol use. These problems fall into the two general categories:

• A radical empiricism which posits the non-existence of any universal cat-
egories or rules, and

• a radical innativism, which relies on a set of innate and immutable rules
and recognition mechanisms for feeding those rules4

Linguistic behavior has many dynamics which can be studied. Due to the com-
plicated nature of linguistic behavior, it is possible to focus on a subset of
these dynamics, and study their interaction and how they affect certain fur-
ther parameters. In the plethora of recent studies on the origins of language
and symbolic communication, different subsets of these dynamics have been se-
lected for various purposes. Among these dynamics, the following are the most
important:

• Multi-agent dynamics of referential communication

• Agent-internal dynamics of organizing categories and labels, and learning

• Generational transmission of linguistic knowledge

• Genetic transmission of successful traits

• Embodied and situated dynamics

Although the umbrella term under which research on the computational
modelling of communicative behavior is usually grouped is “evolution of lan-
guage” or “language evolution”, in many cases, the research does not have much
to do with artificial evolution but, as it was argued, with the effect of one or
more of the above cited dynamics on communicative behavior. It might there-
fore be appropriate to talk of research into the dynamics of communication,

4Smith (1996) calls this difficulty “Scylla of naive realism and the Charybdis of pure con-
structivism” (p.3).
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especially in the context of the work presented here. In their comprehensive
review of the work done until 2003 in this field, Wagner et al. (2003) organize
the various efforts along two dimensions: whether the agents are situated or
not, and whether the tokens used in communication are structured or not. In
this classification, the agents’ situatedness depends on whether the simulation
runs in an environment in which they can interact with other objects and they
have outputs which affect the environment, leading to communication about
these objects and their manipulation. As Wagner et al. (2003) argue, there is a
general progress from nonsituated agents that are simple encoding and decoding
units to more situated ones. The nonsituated, encoding/decoding agents match
communicative symbols to internal representations as an implementation of the
process of interpretation. As research in this area progresses and the agents get
more situated, a move away from encoder/decoder games can be seen, towards
a more situated view of symbol use. This progress can be seen as a move away
from the internalist picture of meanings of symbols as mental representations,
towards a more use-based theory of meaning. Meaning here refers generally to
the process or entity by virtue of which a public symbol (i.e. one used by many
agents at the same time) can be used in communication and in individual activ-
ity in a correct manner. The main reason for the coupling between the situated
models and meaning-as-use is that, in the case of unsituated models, there is
nothing to which the symbols can refer, thereby necessitating an agent-internal
correspondent which serves as the meaning to be transmitted. The next logi-
cal step in this progress from unsituated models to situated ones is placing the
agents in a task setting, thereby enabling the use of symbols to reach a goal; this
step would enable further explorations of use-based theories of meaning. In this
section, the progression of work in the area of dynamics of communication from
encoding/decoding agents to situated ones will be discussed on representative
examples from the literature.

4.2.1 Multi-agent dynamics

In an early example of a synthetic study of the dynamics of communication, Hur-
ford (1989) studies the role of the Saussurean sign in the emergence of linguis-
tic communication. The Saussurean sign is a “bidirectional mapping between
a phonological form and some representation of a concept” (p.187). Hurford
(1989) takes this to be a fundamental component of the Language Acquisition
Device proposed by Chomsky, and aims to present a multi-agent model proving
the evolutionary viability of the Saussurean sign. This sign is assumed to corre-
spond to a mental representation in the head. The background of the model is
sociobiology, which is the study, through quantitative means, of the advantages
of innate dispositions, called strategies, in social evolutionary settings. Instead
of using genetic algorithms, Hurford (1989) pits artificial agents with different
combinations of received signal to concept and concept to uttered signal. The
Saussurean agents utter the same signal they hear for the same concept, whereas
imitators imitate the transmission and reception coupling of the other agents,
and calculators base their transmission behavior on the reception behavior of
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the others, and vice versa. The individuals most successful in their communi-
cation with the other agents are picked as parents for the next generation of
agents; that is, successful communication is assumed to increase the fitness of
the individuals. However, no genetic methods, such as random mutations or
crossover are used. The main problems with this work is that the agents are not
engaged in any kind of practical or embodied activity in an environment, so nei-
ther the inner representations nor the uttered signs are situated. Furthermore,
it is taken for granted that the agents already have mental representations with
which the signals can be coupled; these representations serve as the “meaning”
of any symbols used in communication. These simplistic assumptions hinder
deeper insights into the role of symbolic communication for societies and the
embodied grounding of symbols.

A pioneering study in the emergence of a lexicon is that of Hutchins and
Hazlehurst (1995). Pointing out the preoccupation in cognitive science and
related fields with individual minds and what goes on inside them, they state
their aim as “to put the social and the cognitive in equal theoretical footing by
taking a community of minds as our unit of analysis”. They also commit to
the view of language as a shared resource, instead of a mechanism possessed by
individual agents, and symbols as “shared denotational resources” which arise in
the interaction among the members of a community. Their model is based on a
number of theoretical assumptions from work on distributed cognition reported
by Hutchins (1996). The most important among these are the following:

• The cultural grounding of intelligence assumption: No social mind can
become appropriately organized except via interaction with the products
of the organization of other minds, and the shared physical environment.

• The shallow symbols assumption: The nature of mental representations
cannot simply be assumed, they must be explained.

• The no developmental magic assumption: The processes that account for
the normal operation of the cognitive system should also account for its
development through time.

The computational model consists of agents embodying auto-associator net-
works. The inputs to these networks consist of images in the form of 6× 6 pixel
grids. The hidden units of the networks act as feature encoders when they are
trained to replicate the input pattern, and these hidden units are then made
“public” to produce a term in a lexicon. This involves taking the output of
these units as utterances. The agent which acts as the listener in a communi-
cation round than carries out back propagation not only on the output of the
network, but also on the values of these hidden/public units. Through episodes
of such conversations, agents arrive at a shared lexicon, which is in practice “a
consensus on a set of distinctions”.

The recognition of the social aspect of cognition and the stress on research
on the social and public nature of symbols is refreshing, compared to the either
mentalist or completely rejecting attitude towards representations from the time
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of Hutchins and Hazlehurst (1995). This work is all the more interesting due to
its cognitive orientation, stressing the possibilities of computational theorizing
by taking the community of agents and not the individual as the unit of expla-
nation. On the other hand, activity-as-categorization and the simplicity of the
input stimuli are the limiting factors of this model. The symbols neither refer
to entities embedded in a common environment, nor are they used in a task
context.

4.2.1.1 Steels’ language games

Among the researchers in the field of dynamics of communication, Steels is one
of the most prolific and probably the best-known. He carried out a number of
intertwined studies to model various aspects of symbolic and linguistic commu-
nication. His starting point is a view of language as a self-organizing dynamic
system, which is then studied in the interaction of a population of agents which
engage in language games. These games vary in their communicative extent,
how the referent of a word is revealed to the agents, what the units of com-
munication are, and the motor and perceptual apparatus of the agents. Also,
the studied phenomena vary considerably, from the emergence of a lexicon to
simple grammatic processes.

Steels (1997b) pits three different views of language development against
each other: the Chomskian view of linguistic competence through possession of
the language organ, language as an adaptive dynamic system, and genetic assim-
ilation, which is a synthesis of the first two positions. He then goes on to make a
very convincing case for the dynamic systems approach to modeling communica-
tion. The status of linguistic knowledge, traditionally considered, is in the heads
of the agents, in the form of internalized rules and word-concept mappings. In
the work of Steels, linguistic knowledge is treated as being inherent in the com-
municative conventions of a community, instead of being encoded in genes and
organs in the brain. This knowledge is preserved through learning, a process
which also leads to language change, as in the no developmental magic assump-
tion of Hutchins and Hazlehurst (1995). Also due to the plethora of selectionist
criteria on the communicative dynamics (such as maximizing communicative
success, minimizing cognitive processing and memory load, compatibility with
the limitations of the sensori-motor apparatus), the various idiosyncrasies of
a communicative system at any point in time can be analyzed as a result of
the playing out of these factors. Steels (1997b) also argues that the position
taken on the origins of symbolic communication has an impact on the nature of
linguistic theory:

The genetic approach championed by the Chomsky school rejects
functionalism and sees the language faculty as a formal mechanism
whose nature is largely arbitrary. The self-organization/adaptation
approach is based on the view that language is a device for com-
munication and representation and therefore sees the specific form
of language as the result of balancing physiological and functional
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constraints. Whereas the genetic approach resonates therefore the
strongest with the generative, formalistic tradition in linguistics,
the adaptive approach is more in line with cognitive and functional
grammar.

Another important aspect of Steels’ work is the rejection of the mentalist
separation of meanings (in the head) and utterances (out in the world). Ac-
cording to Steels (1998), these two things are interdependent: “Language and
meaning coevolve. Language is not a mere complex system of labels for concepts
and conceptual structures which already exist prior to language, but, rather, the
complexification of language contributes to the ability to form richer conceptu-
alizations which then in turn cause language itself to become more complex”
(p.385). This co-dependence of meaning creation and linguistic competence is
parallel to the view of multi-agent communication serving as the basis of ad-
vanced capacities for intelligence: “We assume that language has played a key
role in the formation of a symbolic layer in human intelligence and therefore
focus on experiments in which the origin of language could take place” (Steels,
1996b). An important precondition for such a foundational role for linguistic
symbols is that the language games are a means for creating a grounded system
of symbols. The symbols used in the language games should refer to concepts
grounded in the sensory-motor interactions of the agents: “Agents start with
no prior designer-supplied ontology nor lexicon. A shared ontology and lexi-
con must emerge from scratch in a self-organized process” (Steels and Kaplan,
1999b).

The general structure of a language game setup as used by Steels in his
models involves agents with certain capacities taking part in interactions with
each other. Generally, the flow of this interaction is as follows (Steels, 2003):
Two agents are selected randomly from a population. They engage in a language
game encompassing either objects in their common situation or a part of the
common language. Each agent has a certain cognitive architecture and memory
mechanisms, which are used to store lexicons or grammars. The outcome of the
game is signaled to the agents, or they somehow sense it. This outcome is then
used to update the memory structures of the agents, so that the further success
of the game increases the more it is played. Therefore, there are four necessary
components for specifying a language game:

• An interaction protocol specifying the flow of interaction and the channels
used for communication

• A definition of the architecture of the agents

• An environment in which the agents perceive and interact with the objects

• A measure for determining the success of the language games

In the following, first, the earliest examples of the language game setup will be
explained to demonstrate the basic idea of the setup. Afterwards, examples of
the subjects to which this setup has been applied will be given.
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The earliest work done by Steels is in terms of what he calls “the adap-
tive constructive approach to lexicon formation and meaning creation” (Steels,
1997b)5. Before the agents can engage in communicative interactions, they need
capabilities to conceptualize their environment, so that they can attach labels
to these concepts. This conceptualization capability is acquired through agents
engaging in a preliminary discrimination game, which involves agents learning
to discriminate different objects in their environment (Steels, 1997a). These
objects are defined by their features on various channels. Agents build trees
which divide these continuous channels into subdomains and thus map them
onto categories. Combinations of these trees are then selected in order to pick
an object out of a set. This set is defined as the context. In case the existing
set of trees is not sufficient to pick the designated object out of the context,
one of the channels is re-partitioned, i.e. a new category is created, to enable
the discrimination of the object. This way, agents develop all the necessary
discriminations necessary to distinguish between a set of objects6.

Once the agents can discriminate the objects through trees defined on per-
ceptual channels, they engage in various kinds of language games (Steels, 1996a).
There are two kinds of language games: the naming game and the guessing game.
In the naming game, two agents are randomly picked. One of these agents acts
as the speaker, and the other acts as the hearer. The speaker picks an object
from the environment, and “points” to it (i.e. it is made available also to the
other agent), so that the other agent also knows which topic has been selected.
Afterwards, the speaker looks for a word for the picked topic by matching the
concept for that object to a word in the lexicon. If such a word does not exist,
the speaker might create a new word (with a certain probability) and transmit it
to the other agent; otherwise the game fails. If the speaker has a word or creates
one to match the feature set distinguishing the topic, “the hearer decodes the
resulting expression using his lexicon and the game succeeds if the distinctive
feature set decoded by the hearer matches with the expected distinctive feature
set” (Steels (1998), p.390; see also Steels et al. (2002) for further details). In
the second kind of language game, the guessing game, only verbal communi-
cation takes place. Two agents try to agree on referring to a topic with the
same label, but the perceptual means of how to refer to this topic is decided
individually. The guessing game relies on a certain vocabulary already being
available (Steels, 1999), and in the absence of a reliable mechanism of pointing,
language formation does not take place (Steels and Kaplan, 1998).

The language games setup has been applied in a number of different ex-
perimental environments with various kinds of objects and sensory-motor ca-
pabilities. The experimental environment which has been the most thoroughly
studied is the “talking heads” scenario, which involved perceptually situated
agents engaging in language games (Steels et al., 2002). In the talking heads
experiments, the agents are pan-tilt cameras with two degrees of freedom, con-

5Steels mentions this definition particularly in the context of the work of Hutchins and
Hazlehurst (1995)

6See Steels (1996c) for technical details of how these channels are partitioned and new
categories are created.
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trolled by computers. The environment consists of whiteboards with various
geometrical figures pasted on them. The agents first engage in discrimination
games, as explained above, creating branches of the various sensory channels,
such as horizontal and vertical location or color, in order to discriminate these
figures from each other. These concepts serve as the meanings which have to be
communicated to the other agents in language games. After the generation of
these concepts, language games take place. One agent picks a topic and either
finds or creates a label which matches this topic. This label is passed on to an-
other agent, which tries to guess which topic was picked. In case this language
game fails, the topic is pointed out by the speaker to the listener, which updates
its internal structures.

In the course of the language games, incoherence in the vocabulary of agents
can appear due to a number of reasons. The two most important reasons for
incoherence are synonymy (two words having the same meaning) and polysemy
(one word having multiple similar meanings). Synonymy is resolved through
weighted connections between words and meanings. Meaning here refers to the
category created by partitioning the sensory channels, and then used to pick out
different objects. When a language game succeeds, the weight of the connection
between the word used and the meaning communicated is strengthened, while
the weights between the other words and the meaning are decreased, both by the
speaker and the listener. In case a game fails, the weight of the aforementioned
connection is decreased. With the use of this weighting mechanism, words that
serve successful communication are used progressively more frequently, and one
meaning is communicated with only one word after a certain number of games
(Steels and Kaplan, 1999a). Polysemy occurs when two different meanings can
be used to pick the same object; for example, a red object on the left of the
board can be distinguished using either its vertical position or the value of
the color channel for this object. Agents can use the same word to refer to
such different meanings, and the language games will succeed as long as these
meanings serve to distinguish the same object. Polysemy gets resolved when
a situation enforces disambiguation, that is, when these two meanings are not
sufficient to distinguish an object (Steels and Kaplan, 1999b). In the example
with the red object, this would correspond to the existence of two red objects in
the scene, or of another object with the same vertical position. Another effect
that was observed is the preference for words and meanings which were stable in
the sense that they did not rely on subtle differences, such as small differences
in color caused by lighting conditions. Instead, the meanings and corresponding
words which prevailed relied on distinctions that were robust across different
environments (Steels et al., 2002).

Through the use of these mechanisms, the emergence of a robust vocabulary
could be observed in a typical experiment. After 2000 agents created around 800
words, the vocabulary was reduced to 100 words, with 8 core words referring to
color and direction. The communities were also robust, in that they could create
new words when new objects were introduced. Furthermore, new agents could
also be introduced into a community, where they learned the already existing
vocabulary (Steels et al., 2002).
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An early robotic language game involved robotic agents in an area populated
by various objects, such as charging stations and other agents (Steels and Vogt,
1997). The agents roam the area, and occasionally switch from exploration
mode to speaker mode. Once they are in speaker mode, they search for a
possible hearer. A naming game very similar to the above explained scheme
then takes place. The agents identify the possible topics in the environment by
turning around 360 degrees. The objects are picked by identifying the points
where the various sensors (modulated light, visible light and infrared sensors)
cross each other; this is possible due to the simple reason that sensors are
placed symmetrically on the left and right. The speaker adds itself as a possible
topic to the objects thus identified. Afterwards, the speaker picks one topic
from this set and “points” at this topic by turning towards it. The hearer
can identify the topic by sensing how much the speaker has turned; this is
achieved through the use of infrared ray emitters on each robot. With the
fixing of the topic for the naming game, the agents try to come up with sets of
distinctive features to distinguish the topic. As in the talking heads experiments,
the distinctions are achieved by splitting the sensory channels into regions. In
addition to the production of new distinctions in order to categorize objects
in different sensory contexts, a selectionist procedure removes those categories
(i.e. sets of distinctions) which have turned out not to be useful. The rest of
the naming game proceeds as explained above, with the similar final result of a
shared vocabulary.

Another robotic application of the language game framework is presented
in Steels and Kaplan (2001). The robotic agent in this case is the AIBO robot
from Sony, and the task is communicating names for physical objects. Since the
experiment involved a robot, a mechanism for fixing attention was necessary.
This was established by the experimenter showing an object to the robot (hold-
ing it in front of its camera) and uttering a word (in this case simply “Look”)
which caused the robot to fixate on the object. Words from the instructor are
processed with a speech-to-text mechanism. The game played is called the clas-
sification game; the difference from the guessing game is the availability of a
single object. After the attention of the robot is fixed on the object, the speaker
(a human) utters the name of the object. In case the agent has already acquired
the names of the objects, a variant of the game, where the speaker asks the name
of the object, is played. The main difference of this model from the others is
the machine learning method employed. Instead of the partitioning of sensory
channels, an instance-based algorithm which functions with complete images
from the camera is used. The images are transformed into histograms, which
are then compared to each other when a categorization is to be made. Words
are matched to individual images, and the image with the highest similarity
to the image to be classified is considered the winner. The word attached to
the winning image then serves as the category label. Steels and Kaplan (2001)
point out that this learning algorithm has two advantages. The first advantage
is that it supports incremental learning, without a clear distinction between a
learning and a testing phase. The second advantage is the speed of learning,
without initial erratic behavior. With this alternative learning mechanism, the
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robotic agent was able to reach a correct discrimination rate of approximately
80%.

According to Steels (2000), there are three common dynamics at work in
these and similar language game experiments.7 The first of these is reinforce-
ment learning, where the agents receive feedback on the success of their in-
teractions, i.e. whether the categorization they attempted succeeded or not.
Reinforcement on itself is not enough to explain how a population arrives at
common symbols; for this, self-organization at the system level is necessary.
Self-organization is achieved by the agents’ use of the successful symbols more
often, thereby leading to coherence. The third and final dynamic, which is re-
sponsible for the preference of certain symbols, is selectionism. In the case of
the talking heads experiment, the categories that are selected, along with the
symbols which are initially attached to these, are those that can make robust
distinctions in different environments.8 These different mechanisms are respon-
sible for a population’s settling on common communicative tools, be they sound
systems, labels or, as it will be explained shortly, grammatic forms.

When it comes to the coordination of the public carriers of meaning (labels,
symbols etc.), the language games setup enables focusing on the role of social
interaction in constraining the classifications made which can then serve as the
“meanings” of the labels used in communication. Steels (2008) argues that the
meaning of a communicative symbol is a category deduced by an agent through a
categorization mechanism from sensory data; the existence of such a mechanism
is also his standard for calling a symbol “grounded”:

In some cases, there is a method that constrains the use of a symbol
for the objects with which it is associated. The method could, for
example, be a classifier – a perceptual/pattern recognition process
that operates over sensorimotor data to decide whether the object
‘fits’ with the concept. If such an effective method is available, then
we call the symbol grounded (p. 223).

The symbols used in communication refer to objects in the environment, thereby
making them situated. Nevertheless, this concept-object connection, established
by way of agent-internal concepts, also constitutes the limit of their situatedness:
Since the symbols are not situated in a task context, the interpretation of a com-
municative symbol consists only of establishing a connection between a symbol
and a perceptual category. The perception of and referring to the different ob-
jects is the only aim of the interaction of the agents, because the language games
constitute the sole task in which communication takes place. This limitation
makes the language games setup, as applied by Steels, indistinguishable from
the traditional position on categorization and symbol use discussed in Chapter
2. If this setup can be extended by designing agents which apply the symbols

7For an example where vowel systems are studied see de Boer (2000). For another example
in the same direction where sound systems of language are studied see Oudeyer (2005). For a
language game in which descriptions of situations are exchanged see Steels and Baillie (2003).

8Also see Steels (2006) for a discussion of constraints on the scientific viability of work in
modelling language evolution.
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used in communication in embodied behavior within task situations, one more
step can be taken in moving away from the internalist picture of mentalism, and
towards achieving symbols that are situated in the sense discussed in Section
3.2.

The language games setup has been used in a variety of further studies that
include various other mechanisms. In one such study, Kwisthout et al. (208)
focus on the role of joint attention in language acquisition and lexicon forma-
tion. The authors cite Tomasello (1999), according to whom there are three
developmental stages of joint attention. The first is called “checking attention”,
and refers to the ability of an infant to verify that an adult with whom she is
playing is also paying attention to the same object. The second is “following at-
tention”; children acquire this ability when they can follow the gaze or pointing
gesture of an adult in order to pay attention to the same object. At this stage,
it is also possible to talk about the child perceiving the adult as an intentional
agent. The third kind of joint attention is “directing attention”. At this stage,
children attempt to direct the attention of adults to entities in the environment
through communicative acts. In the computational model by Kwisthout et al.
(208), these different mechanisms of joint attention are modelled as the various
processes with which the topic of a language game is changed. The objects
in this particular language game consist of three-dimensional vectors, each di-
mension with four possible values. Each one of these values is a feature, and
each feature corresponds to a meaning. The lexicon of each agent consists of an
association matrix, matching forms (i.e. labels) with meanings. After picking
an object as topic from a set of four possible objects, the hearer produces an
utterance which matches one of the features of this topic, creating a new label
in case none is available. The hearer updates its association matrix, adding
one to the connection weights between the label received and the features in
the context, after the feature set is adjusted according to the attention mech-
anisms used. In the check attention mechanism, the context consists of only
the features of the topic picked by the speaker. In the follow attention mecha-
nism, the hearer selects a random object, different from the one initially picked,
which has the feature initially picked as the meaning to be transmitted. This
object is communicated to the hearer, and the hearer fixes the context as the
features of this second object. Finally, in the direct attention mechanism, the
hearer selects an object which has the feature it interpreted the label as re-
ferring to. The speaker signals to the hearer whether this object contains the
target feature or not. If it does, the new context is the feature set of the object
picked by the hearer; otherwise, it is all the other features in the context. The
different joint attention mechanisms are applied in this order in different com-
binations. Without the checking attention mechanism, perfect communicative
accuracy was never reached. Compared to the combinations where it was ab-
sent, directing attention led to significant improvements. Even more significant
reduction time for reaching perfect communicative accuracy was observed for
following attention. According to the authors, the results show that, for lexicon
acquisition, following attention is more important than directing attention.
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An interesting variation on the idea of language games comes from Galan-
tucci (2005), who created experimental setups in which humans could engage
in communication, but without any available pre-established linguistic or sym-
bolic means. Two subjects share the virtual environment of a computer game
in which they can succeed only if they cooperate. Cooperation is not possible
without communication. The channels of communication are controlled, in that
the players do not know each other, they are separated geographically, and the
only means of communication available to them is through a graphic interface
which prevents the use of common symbols such as letters and drawings. This
is achieved through the distortion of the drawings made by the subjects on a
magnetic board; the vertical movements on the board are transmitted to the
other user, but the horizontal movements are filtered out, and replaced by a
constant horizontal progress as on a seismograph. Such manipulation of the
drawings aimed to achieve three things: reproducing in the visual domain fun-
damental properties of spoken communication, preventing the use of common
graphic symbols and pictorial representations, and presenting the subjects with
a novel signal with minimal familiarity, but with many varying dimensions (such
as amplitude, frequency, thickness, presence vs. absence etc.) which can be used
for communication. The game played by the agents involved navigating a space
with four rooms ordered in a two by two grid; the subjects each started in a
random room, and had one move per round. The aim was to end up in the same
room with this one move. Each room also had a conspicuous sign in the middle
which signified this particular room.

In experiments with 10 pairs of participants, 9 achieved perfect performance
and a consistent communication system. Two methods to establish a common
sign vocabulary was observed. The first of these was learning by using : when
a subject received a sign from the other one, and the game subsequently suc-
ceeded, he proceeded to use the same sign when he wanted to signal making
the same move as in the first situation. The second method for establishing
communication was similar to ostensive definition; when the agents succeeded
in picking the same room, one of the subjects moved its agent continuously
against the sign in the middle of the room and at the same time drew the sign
which he wanted to further use to signify this room. The pairs who relied on
this procedure went through the rooms at the beginning of the game and estab-
lished signs for each room. These pairs were also the ones which established a
vocabulary the fastest.

4.2.1.2 Modelling the emergence and development of syntax

The methods of multi-agent simulation employed primarily in modelling espe-
cially the emergence of a lexicon in a population have also been applied to the
study of syntactic structure. As it was mentioned at the beginning of this chap-
ter, the move from purely referential symbols to syntactic structures is one of
the defining moments in the evolution of language. The emergence of syntax
cannot be modelled by the simple use of labels to refer to different objects; some
extra cognitive machinery has to be assumed. This is reflected in the models of
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the emergence of syntax.
The iterated learning model (ilm) of Kirby and Hurford (2002) is one of

the most interesting models of the evolution of grammar through transmission
from one generation to the next. The agents in this model possess a grammar,
represented in the form of rules for transformation of strings of characters. This
internal grammar corresponds to the I-language in the Chomskian distinction
of I-language (what the users represent) versus E-language (what exists as ut-
terances). For a language to persist from one generation to the next, it has
to be mapped from the I-language to the E-language (through use), and then
from the E-language to the I-language (through acquisition). The aim of the
work of Kirby and Hurford (2002) is to see to what extent certain properties
of the syntax of human language (e.g. compositionality) can be explained by
glossogenetic evolution (that is, evolution in a historical timescale, as languages
undergo in culture), instead of arguments based on natural selection.

In one version of the ilm, agents are given sets of meanings to represent
to each other in a series of interactions (Kirby, 2002). These meanings are
represented as statements in predicate logic. A speaker transforms a meaning
given to it into an utterance by applying the grammar rules in its internal
representation of language. The listener tries to decode this utterance on the
basis of the grammar it possesses; if this is not possible, it gets the utterance-
meaning pair in order to learn from it. The speaker learns by inventing strings; in
case it cannot represent a certain meaning with its own grammar, it tries to find
the closest meaning that it can produce, and deduce from this a new string by
creating random letter sequences for the mismatching parts. The listener, on the
other hand, learns through an induction algorithm which progressively creates
more general grammatical transformation rules, removing the simpler rules in
the process. The main criterion for the learning algorithm is “that the learner
can always parse the data heard, but may also generalize to unseen examples
if the generalization is justified by the data” (Kirby and Hurford, 2002). The
selectionist pressure in this model comes from the deletion of the rules which
have become unnecessary and are subsumed by the newer, more general rules.
In the experiments, a speaker engages in a number of such communicative acts
with a listener, after which it gets removed from the population, and the listener
becomes the new speaker.

The results point to a two-stage evolution of a possible language. In the first
stage, a protolanguage emerges, which has words for some meanings, but not
compositionality. Strings of characters are simply matched to different mean-
ings, and there is no systematicity. Further into the simulation, grammars start
to emerge which make use of systematicity and general rules. The reason for
this progressive systematization is that languages (in the sense of a set of gram-
matical rules, i.e. I-language) are favored to the extent that they enable more
general rules. This tendency is not built into the agents; it rather stems from the
simple fact that rules which express more meanings are presented more often to
the listeners. Furthermore, in a language which has to express a big number of
meanings, more general rules are more viable, since they generalize to meanings
not experienced in earlier generations.
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The model of Kirby (2002) gives insights into the process through which
languages converge on a set of grammatical conventions, and offers strong ar-
guments in favor of language change as an explanatory mechanism for the most
characteristic features of human language. However, a number of assumptions
make this model less then ideal. The first of these is the assumption of internal
structural processing capacities which are independent of language. Another
problematic aspect of this work is that listeners have access to the meanings
the speakers intend to communicate. This assumes not only that there is a
one-to-one matching between internal meaning and linguistic meaning, but also
that this meaning can be transmitted clearly to others.

Another approach to the evolution of grammar is that of Steels (2002), who
starts from the idea “that grammar learning is driven by the desire to com-
municate as effectively as possible” (p.251). The setup is based on work by
Steels and Baillie (2003), where agents engage in language games involving de-
scriptions of scenes. A scene is presented to the agents in the form of a video
(such as a ball rolling towards another ball). This video is then analyzed by the
agents to derive a description of the scene. The speaker conceptualizes parts
of such a description, verbalizes this conceptualization, and transmits this sen-
tence to the hearer. The hearer then decodes this sentence and checks whether
it suits any of the scenes it has in its memory. Steels (2002) studies particularly
case grammar, and more particularly the signalling of semantic role with case
markers. Semantic roles are deduced from the descriptions of scenes through
a form of analogical reasoning. The scene descriptions are stored in predicate
logic formulas. When deducing sentences from these descriptions, distinctive
predicates are selected for the objects, as in the talking head experiments. It
is assumed, relying on the talking heads experiments, that agents have already
come up with names for such predicates, such as “red” or “ball”. The parsing
and production of sentences is achieved using a form of unification grammar.9

The main feature of this process is that when an agent produces a sentence, it
first tries itself to parse it, thereby detecting any ambiguities. In experiments
without case grammar, these ambiguities are not removed, and communication
between the agents can be achieved only when they are at the same time look-
ing at the same scene. This is due to the ability of the hearer to resolve the
ambiguity from the scene itself. For successful communication in the absence of
a common context, the speaker adds a marker to signal a certain semantic role.
When it encounters an unknown marker in the interpretation of a sentence, the
speaker assumes that there is enough information in the sentence to resolve the
ambiguities. In experiments with various scenes, agents agree on a grammar
after 200 games. This number is much higher (700) and much more markers are
produced (28 instead of 11) when the agents are not allowed to generalize their
grammar through analogy.

Another attempt to bring together the language games framework with syn-
tactic structures is Vogt (2005b). Here, the ilm and the talking heads setup

9See Steels (2004) for more details on the processes of creating sentences and deducing
descriptions from sentences.
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are joined together, but the interaction between the agents is not limited to
teachers and students. As in the talking heads setup, geometrical shapes are
used, and perceptual processes classify them according to four values on the
perceptual channels (three for color, one for shape). The classification process
is different from the original talking heads setup; instead of classification trees,
a 1-nearest-neighbor algorithm is used. The agents have rule-based grammars
which can either create combinations out of a feature vector, or map a word
onto such a vector. New rules are created and existing ones are generalized
as in the ilm (Kirby, 2002).10 The consecutive populations consist of 3 adults
and 3 children, and after 6000 language games, the adults were removed. The
children then became adults, and new children were introduced into the pop-
ulation. The probability with which the speaker is an adult and the listener
is a child was varied in the experiments, in order to test for the emergence of
compositionality in different conditions. It was found out that compositionality
remained high in the language when the majority of the speakers were children.
The author draws the conclusion that “the more vertical the transmission of the
language, the less likely compositional structures in languages tend to remain if
no transmission bottleneck is imposed” (Vogt, 2005b, p.337).

4.2.2 Evolving communicative behavior

The emergence of communication is a hotly disputed topic also in the field of
artificial life. These models generally use genetic algorithms to understand the
conditions under which communicative behavior emerges and leads to popula-
tions with selective advantages.

One of the earliest examples of such work is that of Werner and Dyer (1992),
who want to model communication behavior inspired by animal communication
as a first step towards understanding language. They stress that communication
should not take place for its own sake, but should serve a purpose in a wider
behavioral context. Their experimental model consist of a population of males
and females on a toroidal grid, and the wider behavioral context is mating.
These agents have genomes which encode connection weights and biases of a
recurrent neural network. The males are blind and cannot see where the females
are but they can move towards the females in order to mate with them. The
females, on the other hand, can see, but they cannot move. Instead, they can
produce sounds in order to direct the males towards themselves. Based on this
difference in sensory and motor capabilities, the output of female networks were
interpreted as sound signals and coupled to the input of the males, whereas the
output of the male networks were interpreted as movements on the grid, and
their position was changed according to this output. In turn, the position and
the orientation of the male was given to the female network as input. The genetic
algorithm of Werner and Dyer (1992) differs from traditional genetic algorithms
in that the population is not subjected to a selection process arbitrarily at a
point in time: when a male finds a female, they are mated, and they and their

10For the specific details see Vogt (2005a).
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offspring are placed on different points on the arena afterwards. This enables
the co-presence of different generations on the grid, which is a suitable condition
for common signs to emerge.

In the experiments, first, the males which simply stood in place were elimi-
nated through evolution. Afterwards, the males which simply went forward were
selected, and the ones that simply circled or took too many turns were extinct.
After around 50,000 time steps, females evolved to give signals to males to turn
to face them when they were in the same column. In a control population in
which the females could not give out signals the males would find a female in
an average of 100 moves. In the signalling population, this value was 40 moves.

MacLennan and Burghardt (1993) study the emergence and evolution of
communication in a very similar manner to Werner and Dyer (1992), in that they
base communication on the sharing of a certain piece of information which is
available to some agents but not available to others. MacLennan and Burghardt
(1993) also argue that this information has to have significance to the agents.
However, the environments in which the agents operate and their communica-
tion mechanisms are even simpler: both the environment and the communica-
tion signal are single variables which can take on certain values. The agents are
finite state machines, which are encoded in strings in order to apply genetic al-
gorithms. In each step, all agents in a population either emit a signal according
to their current state, or take an action based on the state of another agent,
which the authors call cooperating behavior. As it can be expected, communica-
tive behavior increases the fitness of the population. However, the simplicity of
the environment and behavioral repertoire makes the model of MacLennan and
Burghardt (1993) simply a case study in analogies in artificial evolution.

Parisi (1997) compares the artificial life application of neural networks to
their use in other and earlier connectionist approaches, especially in the mod-
elling of linguistic phenomena. He gives examples from work on evolving neural
network controllers for miniature robots. One of the examples is the individual
use of labels to improve categorization behavior and thus fitness for an environ-
ment. When a robotic agent which functions in an environment populated by
objects with varying significance (i.e. danger and food) receives, in addition to
the sensory input from the objects, labels which correspond to the significance of
this object, the performance of the agent increases, which means that language
can function as “an aid to categorization by stabilizing the class of objects that
must be put in the same category and responded in the same way” (Parisi, 1997,
p.129). In order for symbolic communication to emerge, these signals have to
come from another agent in the vicinity; if this is the case, the signals received
from other agents can further be used by individual agents. Why agents should
bother to send such signals identifying categories is a further problem addressed.
Parisi et al. (1995) have shown that altruistic behavior (in the form of signalling
the presence of food) evolves when agents are equipped with an altruism gene
which determines how much of the food they eat and how much they give to
offspring which has the same altruism gene as themselves.

The emergence of a simple language in a population has been modelled
by Cangelosi and Parisi (1998). This study is a clear example of the general
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tendency in artificial life studies of symbolic communication of creating agents in
an environment with different kinds of objects, different actions that the agents
can carry out on them, and different kinds of outcomes in terms of effects on
the survival chances of the agent. In the case of Cangelosi and Parisi (1998),
the environment is a grid of 20 × 20, and it is populated by mushrooms of
two kinds, edible or poisonous. These kinds of mushrooms are differentiated
through their visual properties. Stepping on a cell with a mushroom leads
either to acquiring more energy, if case it is edible, or losing energy, in case
it is poisonous. The agents, which are feed-forward neural networks with a
hidden layer, receive as input the location of the nearest mushroom. The visual
properties of the mushroom are also given as input in case it is in one of the eight
cells neighboring the agent’s current location; otherwise, these input values are
set to zero. The agents also have input nodes for signals from other agents. A
genetic algorithm picks the fittest agents, decided on the basis of their energy
levels, and creates offsprings from these. In one population, the agents do not
have communicative abilities; in another, communication is modelled with two
agents being placed into the same environment, where one undergoes the same
experimental procedure as normal, but also receives a signal from another agent
which is supplied with, in addition to the location of the closest mushroom,
its visual properties, no matter how far it is. In a comparison of two evolved
populations, one with communication and one without, the population without
communication had 150 units of energy on average at the end of the experiment,
while the population with energy had 250 units of energy on average. Cangelosi
(2001) argues that “this simulation shows that a population of simple artificial
organisms living in a simple environment can evolve an efficient language with
an informative function to help the individuals interact with their environment”.

This work has been extended to study certain aspects of linguistic and sym-
bolic communication. The grounding of symbols and the differentiation of dif-
ferent kinds of words have been studied by Cangelosi (2004). A simulated agent
with an arm with two degrees of freedom was given a perceptual input of a 5×5
grid. On this grid, either horizontal lines (category A) or vertical lines (category
B) with a length of three cells were presented. The agents were feed-forward
neural networks with an input layer consisting of 4 units for proprioception, 25
units for visual input, and 4 units for language input. The output was 4 units
interpreted as the extension of the two joints for moving the arm. In the first
part of the simulation, agents were selected for pushing B stimuli away from
and pulling A stimuli towards the agent. Once there is a population of agents
which can carry out this task, this population is further evolved for being able
to interpret input to the language units. The inputs to the language unit consist
of two words of two units each. There are two verbs corresponding to “push”
and “pull”, and two nouns corresponding to A and B. When a rule is given
which conflicts with the default one for which the agents were evolved in the
first stage, this new rule overrides the default rule.

In order to compare their performances and grounding of linguistic sym-
bols in behavior, three populations were evolved. The first of these populations
had no linguistic experience (no-language), the second was evolved as explained
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above (late-language), and a third one was evolved with linguistic input from the
beginning (early-language). In a test phase without linguistic input, the perfor-
mance of the late-language population was the best, with 16.6 successful tasks
in 20. Second was the no-language population, with 15.8 successful, and the
early-language population was last with 14.4 successful (Cangelosi and Parisi,
2001). According to Cangelosi and Parisi (2001), this result proves that when
language is allowed to build on already existing cognitive capacities, it leads
to not only better application of language to behavior, but also to improved
performance in nonlinguistic behavior. Further analysis of the performance of
the late-language group shows better performance in epochs in which only noun
words were given as input once language selection is started, but better perfor-
mance in verb and verb plus noun epochs around 100 generations later. This
is explained with the consistency of the no-language task with that in the noun
tasks. In order to succeed in the verb tasks, the agents have to ignore some of
the previous information. Verb tasks improve once noun performance stabilizes
and can serve as a basis for applying nouns.11

A similar study aimed to understand the phenomenon of symbolic theft.
Categories can be acquired, according to Cangelosi and Harnad (2001), in two
ways. The first of these is “sensorimotor toil”, which refers to the acquisition
of categories “through laborious, real-time trial and error, guided by corrective
feedback from the consequences of sorting things correctly or incorrectly”. The
second way to acquire categories is through symbolic theft, which refers to
picking the distinction through an encounter with someone who already has
it. Symbolic theft is the primary means of social category learning, where
categorical distinctions are spread in a community. An important feature of
this process is that it relies on the existence of categories which are already
earned through toil; otherwise, these symbols are prone to the symbol grounding
problem. Symbolic theft is also the main reason for the adaptive advantage of
language, since it allows speakers to acquire knowledge without the risks or costs
of direct trial and error experience.

The experimental setup for modelling these processes is very similar to the
one explained above, a grid populated with mushrooms. The main differences
are that the mushrooms now have two kinds of visual features which can occur
together (resulting in mushrooms of type A, B, and AB), and there are three
actions which can be carried out on the mushrooms. The actions are eating,
marking and returning; a combination of these actions has to be carried out
on each different kind of mushroom. The agents also make vocalizations when
they approach a mushroom, specifying what they are going to do. What the
agents undertake with the mushrooms and which signals are emitted are learned
through supervised learning. In addition to supervised learning, a genetic algo-
rithm selects the fittest agents and reproduces them. In order to compare the
difference of theft compared to toil, two populations are evolved. The first stage
of the experiment is the same for both populations: they all learn to eat mush-

11In Marocco et al. (2002), a similar task environment is explored, but with a more advanced
robotic task involving an arm with six degrees of freedom.
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rooms with feature A and mark mushrooms with feature B, through toil. In the
second stage, the agents in the toil population learn to return to mushrooms of
type AB through toil, whereas the agents in the theft group learn to return to
the AB mushrooms on the basis of hearing the vocalization of the mushrooms’
names. Statistical analysis of the number of AB mushrooms collected revealed
that the theft population was more adaptive than the toil population. In order
to make a direct comparison, members from the two populations were mixed
and evolved together. In less than 10 generations, the thieves took over the
whole population.

As a critical perspective on the work done till then, Di Paolo (1998) argues
that biologically motivated studies of communication have taken for granted
what they are supposed to explain, and that the definitions of communication
on which they rely as transfer of information already assumes a certain kind of
explanation. Information transfer here refers to a signal reducing the receiver’s
uncertainty about the world, e.g. by specifying a fact not directly visible in the
environment, or not known by the receiver. In biology, as well as in the study of
evolution of communication, information transfer has been assumed to be ben-
eficial in a selective context, and the form communication has to take place has
been derived from this assumption: “By inappropriately deriving operational
features from functional conclusions, many researchers have assumed that a
necessary condition for communication is that not all relevant aspects of the
environment are known equally to all the participants” (Di Paolo, 1998, p.290).
In order to counter this tendency, Di Paolo (1998) employs autopoietic theory
to define communication as any kind of behavioral coordination, without the
necessity of information transfer, or difference in knowledge of the environment
between the agents.

In order to test this formulation, a game of symbolic communication is de-
vised, in which simulated agents are placed on a toroidal grid with different
kinds of food sources scattered. All agents are born with a certain level of en-
ergy, and the level of this energy decides whether they can reproduce (for high
energy levels) or are removed from the population (for energy levels under a
certain threshold). Energy can be acquired from the food sources, with differ-
ent kinds of sources necessitating different kinds of actions. Each action has an
effective component, which decides how much energy is extracted from a food
source, and an external manifestation, which does not have an effect on the
amount of energy extracted. In one time unit, a game is played, in which two
agents and a food source from their vicinity are selected. One of these agents
carries out an action. The other agent perceives the external manifestation of
this action, but not what kind of food source the action was carried out on. If
both agents carry out the correct action, the total amount of energy in the food
source is distributed equally among them. Otherwise, both agents receive less
energy. The agents are encoded as stateless machines, simply encoding the re-
sponse to different kinds of foods and manifestations. When the simulation was
run, it was observed that the agents formed clusters, due to the agents in sparse
regions dying out. The population of agents is observed to rely on behavioral
coordination in order to maximize energy intake from the food sources. The
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agents organize themselves in clusters, with these clusters dynamically moving,
splitting and emerging. The formation and movement of these clusters are due
to the dual dynamics of genetic inheritance and food sources getting depleted.

Further research on the evolution of communicative channels has been car-
ried out by Quinn (2001), who has proposed working on evolving communicative
behavior out of other simple behaviors. The emergence of communicative be-
havior is a difficult topic because the signal and the response have to come
to being together; each, on its own, is meaningless and does not proffer any
advantage. One possible way to explain the evolution of communication is by
postulating an originally non-communicative role for the signal or the response.
In the examples seen above, and in general in the genetic models of communi-
cation, the communication channels serve solely one purpose, and their having
any non-communicative function is categorically excluded. The alternative pro-
posed by Quinn (2001) takes the form of simple Khepera robots, equipped with
short-range infrared sensors with a certain range and two motor-driven wheels,
coupled in a task of mutual coordination. The agents, controlled by neural net-
works, are placed in each other’s vicinity in a number of different constellations,
in which the distance between the agents (always smaller than the sensory range)
and their orientation varies. The fitness function used in the genetic algorithm
responsible for evolution is constructed to pick the couples which succeed in
travelling a certain distance together without bumping into each other, staying
in each other’s sensory range at the same time. The same fitness value is cal-
culated for the agents in a single run, so that there is no competition between
them. The only way the agents can communicate for coordination is by using
their IR sensors and motors, and this has to be established without information
on the direction the other agent is facing, since the agents are cylindrical. After
2000 generations, 27 of the initial 30 populations produce successful solutions
to the task. In all these populations, one of the agents take on the role of the
leader, and the other follows. In one successful population, the final agents start
rotating counterclockwise when the round starts. Once an agent senses another
agent in front of it, it stops and starts going back and forth. The other agent,
also having placed its counterpart in front of itself by rotating, then takes on
the role of the leader and starts backing up. The first agent follows it, with the
two agents now moving together in one direction. Analysis of the networks of
these agents show that the back-and-forth movement of the first agent signals
to the second agent that it is ready to run as a follower. Further analysis of the
evolution of the agents also proves that this signaling behavior was based on
the foregoing evolution of obstacle avoidance (i.e. agents going back and forth
when they came too close to the other one) and one of the agents backing up
because the other was not able to do so.

An interesting recent addition to the evolutionary models of communica-
tion which eschew dedicated channels is that of Williams et al. (2008). They
call the interpretation of communication as the use of signals to transmit in-
formation the IT view, short for information transmission. This is contrasted
with the view of communication as encompassing all kinds of socially coordi-
nated behavior, a stance they call the CB (coordinated behavior) view. The
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IT view has been occupied primarily with referential communication, i.e. the
transmission of signals which refer to objects or situations independent of the
agents. The CB view, on the other hand, has focused on other kinds of tasks,
such as the leader/follower signalling behavior in the work of Quinn (2001).
The aim of Williams et al. (2008) is to study referential communication from
the CB point of view. To this end, artificial agents, controlled by continuous
time neural networks, are evolved using genetic algorithms on a 2-dimensional
circular environment. Instead of coevolution, a pair of agents, one sender and
one receiver, are encoded on the same genome. Both agents have sensors with
a certain range which tell them where the other agent is. The sender also can
sense the position of a certain target location on the circle. The task is to
have the sender direct the receiver to this target location through behavioral
coordination. Referential communication emerges when the sender is confined
to a certain region on the circle which does not include the target point. In
the absence of these conditions, the sender simply goes to the point where the
target is and places itself a certain distance from the target. When the target
can take on a limited number of values (four in the experiments reported), the
sender exhibits different kinds of easily distinguishable behaviors, such as mov-
ing to the top or bottom of the allowed arc, in order to signal the location of
the target. In a further experiment, ten target locations were used in order to
force the agents to develop strategies that can be generalized. Under this second
condition, the sender-received evolve to cross their paths twice at the beginning
of the experiment. The time gap between these two crossings is controlled by
the sender, because the receiver moves with a constant speed. The sender uses
this time gap to signal the distance of the target point to the receiver, thereby
enabling systematic communication of a continuum of values. According to the
authors, “this ability to indicate a continuum of locations is analogous to the
various deictic indicators used in human communication, such as finger pointing
and eye gaze” (Williams et al., 2008, p.708).

Grim et al. (2002) have used both genetic algorithms and neural networks
to study how meaning “happens” in a population. Their approach is based on a
certain philosophical position regarding meaning on the one hand, and a critical
perspective on most models of communication on the other. The philosophical
viewpoint relies on the ideas of Wittgenstein, presented in Section 2.4.1. Grim
et al. (2002) point out that relational theories of meaning, where either an
internal or external object provides the meaning of a word or signal through
a relationship of correspondence, are widespread in cognitive science and AI.
They further argue that

[A] grasp of meaning will come not by looking for the right kind of
object but by attention to the coordinated interaction of agents in a
community. In practical terms, the measure of communication will
be functional coordination alone, rather than an attempt to find
matches between internal representations and referential matches
(p.46).

Grim et al. (2002) contrast the philosophical discussion on meaning with the
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discussion on the status of life more than a century ago. Once life was considered
a component of all living beings, an inner quality which living bodies had but
dead bodies lacked. This conception of life was later replaced by a functional
understanding in terms of evolving communities. Such an understanding also
allows for treating life as a matter of degree instead of as an either-or property.
The development of the biological concept of life can point to the way out of
the representationalist view:

The proper way to understand meaning may be on the analogy of
our current understanding of life: not as an all-or-nothing relation
tying word to thing or idea, but as a complex continuum of proper-
ties characteristic of coordinated behavior within a community – a
community of communicators – developing over time.

This is also the reason Grim et al. (2004), who want to measure communica-
tive success and thereby the extent of meaningful interaction by the behavioral
coordination of a community of agents, talk about making meaning “happen”
instead of providing a locale for it, or modelling its transfer. Coordinated be-
havior here refers to a community of agents adopting similar communicative and
non-communicative behavioral strategies without appropriating each other’s in-
ternal machinery:

In the model above, there is no guarantee that the internal workings
of behaviorally identical strategies in two individuals are themselves
identical. There are in principle nondenumerably many neural con-
figurations which may show the same behavioral strategy. In training
to match a neighboring ‘perfect communicator’, a neural net may not
only fail to match the absolute values of its neighbor’s weights, but
may not even match its over-all structure of relative weight balances.
What arises in a community is a pattern of coordinated behavior,
but in evolving from an initially randomized array of neural nets
that coordinated behavior need not be built on any uniform under-
structure in the nets themselves (Grim et al., 2002).

The first and most general of the criticisms of Grim et al. (2002) concerning
models of language evolution targets the common practice of rewarding both
parties in a communicative exchange in case of success. The authors argue
that this leads to an artificial environment in which truthfulness simply leads
to fitness, which is not a realistic assumption about natural communication.
Instead of such a scheme, an individualistic reward structure is employed in
their own model. Another criticism, which also relates to the mutual benefit
assumption, regards the spatial character of the models. In many models, as
explained above, the communicating agents are not embedded in any spatial
grid which provides a constraint and a geography to spread at the same time.
This problems is also addressed in their model.

The alternative model proposed by Grim et al. (2002) consists of agents
controlled by neural networks in a toroidal array. These agents can hide or open



CHAPTER 4. THE DYNAMICS OF SYMBOLIC COMMUNICATION 93

their mouths, and they can give out two different signals, but otherwise they are
stationary. The array is also inhabited by sources of food and predators, which
travel through it. If an agent is not hiding when a predator visits its cell, it loses
a point of energy. If it opens its mouth when a food source is visiting the cell,
it receives one point energy. The emission of a signal costs 0.05 energy points.
Such a signal can be perceived only by the neighboring eight cells. With these
sensory and motor capacities, only two optimally communicative strategies are
possible. The first of these is giving out signal 1 when a food source visits the
cell, and opening mouth when the same signal comes from another cell. The
other part of this same strategy is giving out signal 2 when a predator appears,
and hiding when the same signal is received. The other optimal strategy is the
exact same, but with the signal switched, i.e. signal 2 for food source and signal
1 for predators. The agents go through a “century” (100 rounds) of simulation,
after which each one of them looks at its immediate neighborhood to pick the
agent with the highest energy. If this agent has more energy then the agent itself,
it is picked as an instructor in a supervised learning task. The learning task is
not carried out until the student is identical to the instructor, however: in the
experiments, it was found that such rigid copying led to suboptimal strategies
dominating from the beginning. Backpropagation-based supervised learning is
carried out only for a limited number of random input-output values. Over the
course of 300 centuries, nearly the whole population learns to employ one of the
perfect communication strategies. Bordering communities are formed over the
grid in which one of the two strategies dominate.12

The approach presented by Grim et al. (2002) is very interesting in that
they take their inspiration directly from alternative theories of linguistic mean-
ing, with a clear eye for the pitfalls of building in simplistic assumptions, such
as communication as the transfer of correspondences between signals and ob-
jects, or the measure of successful communication being the equality of internal
structures among agents. Grim et al. (2001) also argue that there is not only
one way of thinking about genetic algorithms, namely as approximations to
biological evolution; they can also be thought of as the transfer of “memes”,
cultural strategies that are partially transmitted and recombined. This focus
on the process of behavioral coordination and the spread of different strategies
instead of the kinds of learning method used allows them to study the emergence
of signal-based communication as a “general process facilitated by the environ-
ment pressures of a spatialized environment” (Grim et al., 2002, p.66). However,
it must be noted that the physical capabilities of their agents are rather limited,
with two signals and two on-off behaviors, without embodied coordination. The
idea of behavioral coordination is a very important contribution to models of
the emergence of communication, and it offers a lot of potential to be extended
with more complex behavioral and spatial dynamics.

12Grim et al. (2001) implements pretty much the model but with genetic algorithms.
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4.3 Situated representations in language evolu-
tion

Building on the discussion in the preceding chapters, especially the discussion
of situated representations in Section 3.3, and the overview of the theories and
models of the dynamics and emergence of symbolic communication, a possible
path to understanding human symbol use through multi-agent models clears
up. This path goes through the communicative use of gestures and utterances,
grounding these in the shared situation, and the further use of these same ges-
tures for the purposes of the individual. If such a study is to offer any insights
into the role of language in human intelligence, the possible pitfalls of the cog-
nitivist approach have to be avoided. Some of these pitfalls can be observed in
the work on dynamics of communication, as the overview given above shows.
The most important and most indicative of these is the use of system-internal
representations as the meanings of communicative symbols, and attaching la-
bels to these representations to create units for communication. The general
form this tendency takes in experiments on the dynamics of communication
is that the agents are presented with objects which they have to identify in
order to communicate about them; their engagement with these objects is lim-
ited to identification, with signals created on the basis of this identification (cf.
Türkmen, 2007).

In order to model human symbol use in individual activities and communica-
tive situations, situated representations should be seen as a general guideline.
As a short reminder, the distinguishing properties of situated representations
are that

• their creation is coupled to the perception of their possible use (in com-
munication or embodied behavior) in a situation (cf. the discussion of the
brush example on p. 53),

• their use is not privileged, in that they serve as resources that have to be
interpreted both in private use and communication (cf. the discussion of
plan use on p. 50).

These properties of situated representations entail two primary features which
have to be integrated into current research, especially into the language games
setup. The first of these is the continuity and simultaneity of acting and ut-
tering, i.e. a coordination of linguistic acts of symbolic character with robotic
tasks which involve goal-directed behavior. Coordinating linguistic behavior
with goal-directed behavior is impossible in a paradigm which sees linguistic
symbols as mere labels which get attached to categorizations carried out by a
separate module. An alternative conception of the relationship between sym-
bolic communication and perceptuo-motor coordination is required. Such a
conception should further provide a perspective for the grounding of symbols
in embodied interaction, as well as offering an explanation for the special role
of language in human cognition; this can be achieved only if the experimen-
tal setup is designed to enable embodied behavior modified through the use
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of communicative symbols. The second feature that has to be integrated into
research on dynamics of cognition is the reevaluation of individual situations
to find possibilities of applying situated representations, these possibilities pre-
senting themselves as behavioral strategies that can be achieved through the
use of situated representations. Such continuous evaluation of the situation
corresponds to re-contextualizing representations in each situation, achieving
context-independence through goal-directed application of situated representa-
tions instead of through filter-based abstraction of perceptual data.

Therefore, what is expected of a computational study of symbolic commu-
nication can be summarized under the following rubrics:

Embodied grounding of meaning The model should build on the embodied
capacities of the agents. As in the work of Hutchins and Hazlehurst (1995), the
formation of the lexicon should be a process of agreeing on shared distinctions,
but these distinctions should be of embodied character. As presented in the work
of Steels above, it is possible to let agents create discriminations and base the
communicative capabilities on these distinctions. One possible path to follow is
to have these distinctions arise out of the sensory-motor coordination, instead
of basing them solely on perception.

Social lexicon formation The work presented above on the formation of
lexicons in a community shows that it is possible to model this phenomenon
through language games in shared situations. Symbols which the agents can
use individually should be created in such language games, and shared among
the agents for the establishment of common means to refer to entities or choices.

Social coordination of behavior instead of information transfer The
grounding of shared distinctions in the embodied possibilities in the environ-
ment, coupled with social lexicon formation, would also pave the way for an
understanding and implementation of communication not as transfer of infor-
mation but, as in the work of Grim et al. (2002), social coordination of behavior.
The embodied capacities of the agents can be used to create activity-oriented
scenarios for symbol use, and the creation of a lexicon can thus be modelled as
being grounded in the common embodied capabilities of the agents.

No internal representations before shared symbols Ideally, any repre-
sentations, symbols or labels should be created in a communicative context.
The symbols used for communication should also not simply refer to an inner
representation, or computational structure. Possible ways representations could
be used this way have been presented in the preceding chapter.

Categorization in a task context As it can be seen in this overview, the
task context is very important because it determines whether the meanings are
internal or not. As explained in the preceding chapter, situated concepts are
instantiated in a task context, because they serve the task at hand. Therefore,
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in order to model situated representations, the communicative contexts should
be task-oriented and not necessarily object-oriented. That is, the task should
not be solely the identification of an object, but a certain interaction with the
situation.

In the next chapter, a study on the dynamics of communication will be pre-
sented which aims to implement these principles in a computational model. It
should once more be mentioned here that the human language capacity is very
complicated and comprises many distinct abilities. As mentioned above, it is
possible to start a study of the linguistic capacity by concentrating on an initial
set of capabilities, concerning the use of individual symbols, their formulation,
storage, and comprehension. In the work presented here, the focus will be on
these capabilities due to two reasons. The first of these is that the symbolic
capabilities make the syntactic ones possible in the first place, and the symbolic
capacities have not been properly understood yet, as argued in Chapter 2. The
second reason has to do with the nature of symbolic communication, the sci-
entific mist that surrounds it, and how understanding symbolic communication
would change our understanding of communication and language comprehen-
sion in the first place; that is, any insights achieved by understanding situated
representations will tell us more about what we have to look for in a theory of
further components of the linguistic capacity.



Chapter 5

Similarity-based
categorization and language
games

The embodied and situated approaches have established the significance of as-
pects of intelligence which have been neglected both in the cognitive scientific
and the more general philosophical context, aspects such as embodiment, social
situatedness and the interdependence of sensing, acting and representing. It has
nevertheless been a problematic endeavor to bring together the symbolic and
productive aspects of human intelligence and the low-level capabilities.

In Chapter 4, it was argued that studies on the origins of language and
the dynamics of symbolic communication constitute a candidate approach for
understanding the interplay of the embodied, social and representational facets
of human intelligence. Furthermore, five guiding principles for further research
in this area were presented. In this chapter, an approach to the dynamics of
communication will be presented, with a computational model and results from
experiments with this model.

5.1 Exemplar-based Learning and Categoriza-
tion

Exemplar-based learning is a kind of lazy learning which relies on the storing
of complete sensory data and avoids the creation of structures and abstractions
which would aid faster processing of data in decision tasks. Lazy learning, also
called local memory-based learning, refers to the family of algorithms which
“defer processing of the dataset until they receive request for information (e.g.
prediction or local modeling)” (Bontempi et al., 1999). In exemplar-based learn-
ing, episodes of experience are stored in memory in as much detail as possible,
to be later retrieved based on a cue stimulus. This means that the relevance of
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the content of an exemplar is decided when new stimuli are encountered. This
is one of the strengths of exemplar-based learning: the data does not have to
be abstracted based on design considerations and knowledge of the designer.

One possible objection to memory-based learning methods is that they vio-
late the parsimony principle mentioned in Section 3.1.2, in that they necessitate
excessive information processing, and increasing processing load as more experi-
ence is gathered. Computationally heavy processing machinery, such as low-level
similarity comparison of a large set of raw data, can be seen as antithetical to
a research program which stresses simplicity of proposed mechanisms. Against
this argument, it should be kept in mind that the computational load of an
algorithm is dependent on the nature of the concrete devices on which these
algorithms are executed. For example, parallel processing with a large number
of nodes is inefficient on hardware with a serial architecture, such as the von
Neumann architecture of modern computers, but not so on a parallel computer
with a large number of relatively simple processors. On such parallel machinery,
the comparison of large amounts of perceptual data, as it will be proposed with
the lazy learning algorithm explained in this chapter, is not as counterintuitive
as against the background of the von Neumann architecture.

The two most important aspects of an exemplar-based model are how the
sensory data is represented and the similarity and distance measures used when
comparing exemplars which store sensory data. The two most suitable perspec-
tives for the discussion of these two aspects in a cognitive scientific setting are
the psychological and machine learning perspectives. It must be pointed out
that the machine learning approach presented here is a synthetic application of
ideas from the psychology literature; therefore, the focus is not on expounding
every detail of the exemplar approaches, but presenting the major ideas, and
the experimental proof which certain ideas have received. The application de-
veloped later extends these ideas with practical considerations in mind for the
construction of a program capable of behavioral categorization.

5.1.1 Psychological approaches

In psychology, exemplar-based models have been a significant alternative to
other theories of categorization at the latest since the context theory of classi-
fication by Medin and Schaffer (1978).1

1The difference between concepts and categories in cognitive science and psychology is a
very fluid one. Theories of categories and concepts have very similar agendas and face the
same problems. It can be claimed that concepts have a mentalistic flavor (e.g. when Margolis
and Laurence, 1999a, define concepts as subpropositional mental representations), whereas
categories are generally seen as things out there, and categorization behavior is the more
important problem, rather than categories themselves. Smith and Medin (1981) view catego-
rization as one of the applications of concepts, and in their opinion, “concepts are essentially
pattern-recognition devices” (p. 8). The following approach will be taken here: concepts are
the names of the things “in the head”, which enable differential behavior. Categories, on the
other hand, are ad hoc in that they refer to the situations that are treated differently by an
agent. Therefore, categorization as a behavioral capacity takes precedence to categories (or
concepts) as a scientific subject.
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Traditional theories of categorization view it as the application of concepts,
abstract mental representations that consist of definitions, to entities. According
to what is called the classical theory of concepts, “most concepts encode neces-
sary and sufficient conditions for their own application”(Margolis and Laurence,
1999a, p.9). These component conditions are encoded as a set of representa-
tions, and specify rules for the inclusion of an object under this concept. One
argument against the classical view of categorization has already been men-
tioned in Section 2.4.1, in the discussion on Wittgenstein. Many categories and
concepts used by humans do not have such a strict set of common features, and
are instead defined by family resemblances, i.e. commonalities which are not
necessary conditions, but are highly indicative in case they occur together. In
addition to this and similar theoretical arguments against the classical theory,
there are numerous experimental results which contradict it.2 One of the earli-
est alternative theories to the classical view was the prototype theory of Rosch
and Mervis (1975), according to which category membership is decided on the
basis of similarity to a prototypical member of a category3. The prototype the-
ory of categories aimed to bring together two sets of experimental results which
contradicted the traditional, rule-based approaches. The first of these was the
absence of a strict set of features which determine category membership. Cat-
egory members, as judged by humans, exhibit family resemblances instead of
a common set of features. The second set of results concerns the existence
of typical category members which have features judged to be characteristic
of a category, but not necessary for its definition; it appears that humans use
unnecessary features in making category judgments.

The exemplar theory of Medin and Schaffer (1978) was developed to ap-
ply the then recent insights in discrimination learning to categorization. The
principal aim was to account for experimental results which point to prototype
effects without recourse to abstractions, such as feature-based rules for category
inclusion or prototypes.4 The most important idea propagated by the context
theory, in applying discrimination learning approaches to categorization, was
the possibility of basing classification on exemplar level information, i.e. infor-
mation retrieved from the exemplars in memory, based on the stimulus (as a
retrieval cue) in a trial. Exemplar level information here is defined in contrast
to category level information, such as rules deduced from category samples. In
order to classify a stimulus, “it is assumed that the evidence favoring a category

2See Smith and Medin (1981), Chapter 3 for an overview of experimental evidence against
the classical theory. See also Lakoff (1990) for an impassioned critique of the classical theory
from a more linguistic perspective.

3One can object that when the similarity of objects is defined on the basis of salient
features, this similarity can also be stated in terms of rules, which would render an alternative
similarity-based approach practically equivalent to the classical one. It is not necessary to
claim, however, that similarity ground all categories, but only the ones which are perceptually
more primitive. In this case, the distinction of rule- vs. feature-based concepts would still be
intact. This topic will be discussed in Section 5.1.1.1.

4It is possible that a prototype for a category is among the examples seen by a subject in
an experiment, but in case such a prototype was not presented, the derivation of a prototype
has to be assumed for categorization. This gives such a prototype the status of an abstraction,
because it is not readily available in stimulus data but has to be constructed by the subject.
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j response to probe i is equal to the sum of similarities of probe i to the stored
j exemplars divided by the sum of the similarities of probe i to all stored ex-
emplars” (Medin and Schaffer, 1978, p.211). In the case of the context theory,
and the other psychological theories adopting an exemplar-based approach, the
exemplars do not refer to individual experiences and the sensory data caused
by these experiences, but to the different stimuli which a subject is confronted
with multiple times as the member of a category.

The idea of attributing probabilities to categorization decisions on the basis
of similarities to category exemplars can be derived from extensive work on
identification, especially that of Shepard (1957), who studied experiments in
which distinguishing responses were attached to different stimuli; for example,
response Rj (pressing one of a number of buttons) serves to distinguish stimulus
Sj (one of a number of different visual figures). The central concern of the model
constructed by Shepard (1957), which is called the similarity choice model, was
“not with the learning process per se but with the pattern of generalizations
exhibited at any one given stage of learning” (p.325). More concretely, the aim
of the theory was to find out the nature of the probability of the ith stimulus
of the N stimuli S1, S2 . . . , SN leading to the jth response of the N responses
R1, R2, . . . , RN in an identification experiment. This probability is denoted with
P (Rj |Si). In order to arrive at a formulation of this probability, Shepard (1957)
made a number of simplifying assumptions. The first of these assumptions is
analyzing the performance of the experimental subjects not in terms of the
stimulus-response (S−R) associations they make, but in terms of primarily the
stimulus-stimulus (S−S) confusions which cause them to make errors. That is,
it is not the association between stimuli and responses that are confused, but
the different stimuli among each other: “[T]he subjects know the connection
between any stimulus and its assigned response but still make errors owing to
a certain inability to identify the stimulus” (Shepard, 1957, p.328). A direct
result of this assumption is that at any given time in the learning process, the
confusion probability of a certain stimulus with any other stimulus should be
nonnegative, and all such probabilities add up to one. More concretely, if one
represents the conditional probability that Si, when presented, will be taken to
be Sj , with PSij , the following condition holds:∑

j

PSij = 1, PSij ≥ 0 (5.1)

It is possible to calculate, using the confusion probabilities matrix, which depicts
the chances of confusion of various different stimuli with each other, and some
simple linear algebra, the confusion probabilities for an individual subject or the
whole experimental group, based on data obtained in identification experiments.
However, there are still too many parameters which have to be decided in these
calculations compared to the number of different stimuli (N(N − 1) parameters
for N stimuli) in order to arrive at a complete description of the performance
of subjects. Shepard (1957) argues that one simple assumption would serve to
decrease the number of these parameters dramatically, and thus the number of
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experiments that have to be carried out in order to derive the confusion matrix
for a set of stimuli. This is the assumption that there is a relation between PSij
and PSji of the S−S matrix. One intuitive way of formulating such a relation is
taking the confusion probability of two stimuli to be a function of their similarity,
so that PSij and PSji decrease or increase together as the similarity of Si and Sj
are made respectively smaller or larger.

Shepard (1957) further proposed to study the confusability of two stimuli not
primarily in terms of their similarity, but their distance in a psychological space,
later converting this distance into similarity through a function f . Intuitively,
there are three constraints on the function f ; it should be positive, it should
evaluate to 1 for identical stimuli, and it should be monotonically decreasing, so
that with increasing distance between stimuli, the similarity value tends to zero.
The most important merit of such an approach is that it allows basing a theory of
categorization on sound mathematical fundamentals by relying on the tools and
metaphors of geometry. It must be pointed out that the geometric approach
to similarity and categorization is one of the various dominant paradigms in
psychology on this subject5. One common feature of geometric models is that,
as a theoretical result of the intuitive geometric constraints on the similarity-
distance relationship of stimuli, they rely on the notion of a psychological space
as a metric space. A space S is called a metric space if it has a distance function
d(a, b) which satisfies the following conditions for all points a, b, c in this space
(Gärdenfors, 2000, p.18):

• Minimality: d(a, b) ≥ 0 and d(a, b) = 0 only if a = b

• Symmetry: d(a, b) = d(b, a)

• Triangle inequality: d(a, b) + d(b, c) ≥ d(a, c)

Through this assumption, it is possible to apply our intuitions from geometry
to an understanding of concepts and categories. This point is strongly sup-
ported by recent theories such as that of Gärdenfors (2000), who develops a
comprehensive approach to categorization by defining categories as convex re-
gions in psychological spaces. As it will be argued in a subsequent discussion
of similarity in psychology, for a theory working on the fundamental aspects of
categorization, such as perceptual categories and behavioral categorization, the
various complicating aspects of similarity judgements (e.g. structural similarity,
familiarity effects) are topics which appear when additional complicating factors
such as language, structural factors, social embedding and prolonged experience
in different contexts come into play. It would be wrong to expect a model of
categorization to explain all these effects, especially from an approach, such
as the one presented here, which argues that multi-agent dynamics, and not
solely the agent-internal processes, are responsible for the various complexities
of conceptual and symbolic behavior.

5Other approaches are featural models, such as the Contrast Model by Tversky (1977),
and structure mapping models, such as that of (Markman and Gentner, 1993). See Goldstone
(1999) for an overview.
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Adopting a distance measure in the psychological space, the confusion prob-
ability of two stimuli Si and Sj (assuming Si has been presented first) can be
expressed as follows in terms of their distance in the psychological space, DS

ij
6,

a constant di associated with Si, and the distance-to-similarity function f :

PSij = di · f(DS
ij) (5.2)

The similarity function f translates distance in the psychological space to per-
ceived similarity of two stimuli, resulting in 1 for the same stimuli and 0 for
completely different stimuli (DS

ij → ∞); widely used similarity functions and
their properties are discussed on p. 103. Equation 5.2 can be coupled with
Equation 5.1 as follows, replacing j with h as the generic index in order to
avoid confusion: ∑

h

PSih = di ·
∑
h

f(DS
ih) = 1 (5.3)

Solving Equations 5.2 and 5.3 for di, we get the following:

di =
1∑

h f(DS
ih)

=
PSij

f(DS
ij)

(5.4)

Solving Equation 5.4 for PSij , we arrive at an expression for the confusion
probability (or for the case i = j, identification probability) of the stimuli Si
and Sj :

PSij =
f(DS

ij)∑
h f(DS

ih)
(5.5)

There are two further questions which need to be answered, or two missing
components which have to be supplied by such an approach. The first of these
is the well-known problem of the asymmetry of similarity. Human subjects vary
their judgement of various familiar stimuli depending on the order in which
these stimuli are presented; for example, North Korea is judged by subjects to
be more like China than China is judged to be similar to North Korea (Tversky,
1977). In order to account for this effect, Shepard (1957) proposes to integrate
a weight WS

j with each stimulus Sj , such that if Si is presented, the probability

of perceiving Sj is proportional to WS
j . The most significant advantage of using

such weights is that the metric assumption does not have to be abandoned,
as the symmetry condition of a metric space does not get violated. Equation
5.5 can then be modified as follows to reflect the biases in various similarity
decisions:

PSij =
WS
j f(DS

ij)∑
hW

S
h f(DS

ih)
(5.6)

The second question concerns the nature of the distance function and the

6As discussed above, a psychological space is a metric space, i.e. a geometric space with a
metric.
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distance-to-similarity function f .7 The subject of the relationship between the
distance of psychological stimuli and their similarity based on this distance
has attracted a considerable amount of research, with the results pointing to
different functions for two fundamentally different kinds of stimuli (Nosofsky,
1985). The distance measures are extensions of the Minkowski r-metric, which
gives the distance of two points xi and xj in an N -dimensional space S according
to the following formula:

DS
ij = [

N∑
k=1

|xik − xjk|r]1/r (5.7)

In this equation, xik refers to the value of the point xi in the kth dimension. For
r = 1, this metric gives the so-called city-block metric, whereas for r = 2 it is the
Euclidean distance. In experimental analysis, the Euclidean metric was found
to best match stimuli with integral dimensions, whereas city-block distance is
best suitable for separable stimuli (see e.g. Monahan and Lockhead, 1977, for
a direct comparison of different distance measures using the two kinds of stim-
uli). In the psychological literature, the concept of integral dimensions refers
to those which are co-dependent on each other, in that the specification of one
dimension requires the specification of the other(s). An example for integral di-
mensions is brightness and color saturation of a stimulus; these two dimensions,
although they can have different values, are perceived as one feature. Separable
dimensions are those that can exist independent of each other (Garner, 1974); a
mnemonic for finding out separable dimensions is whether one can refer, using
natural language, to the different components, without the need for a specialist’s
knowledge. An example for compound stimuli is circles of different size with
spikes pointing from the center in different directions; the size of the circle and
the direction of the spike are compound dimensions for such stimuli (used e.g.
in the experiments of Shepard, 1964). The distance-to-similarity function best
matching these distance functions are exponentials of two kinds. One of these
functions is the simple exponential decay:

f(DS
ij) = e−D

S
ij (5.8)

The second function is Gaussian:

f(DS
ij) = e−(D

S
ij)

2

(5.9)

7One important topic which will not be discussed here is how the dimensions on which the
distance function is supposed to operate on are to be determined. With simple stimuli, these
dimensions are not so difficult do identify, because they correspond to the relatively few parts
or aspects of the stimuli. As the stimuli become more complex, however, a systematic way of
determining possible dimensions of the stimulus set is required. The best-known such method
is multi-dimensional scaling (MDS), which is a statistical technique for finding coordinates
for N objects in a D-dimensional space, once a N × N matrix of similarities between these
objects has been determined by similarity ratings, with D < N (Goldstone and Kersten, 2003).
Due to the synthetic approach taken in the work presented here, such an analysis of data for
determining dimensions is not necessary; the procession in a machine learning application is
not from experimental data to unknown dimensions, but from dimensions already determined
by the given raw data to categories.
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In various experiments, the Gaussian function has been found to be the most
suitable for the Euclidean metric, and exponential decay for city-block metric
(Shepard, 1964). The congruence of experimental results on this issue is to
such an extent that Shepard (1987) calls the two groups of integral stimuli,
Euclidean metric and the Gaussian distance-to-similarity function on the one
hand and the contrasting separable stimuli, city-block metric and exponential
decay distance-to-similarity function on the other, the “first universal law” of
psychological science.

In order to transform the confusion probability function (Equation 5.5) of the
similarity choice model into a categorization function, one simple modification
which comes to mind is to sum over the members of a category instead of
taking similarity to a single exemplar. With this transformation, which is called
the mapping hypothesis by Nosofsky (1986), the probability that stimulus Si is
classified in category CJ of m different categories (1 ≤ J ≤ m) is given by the
following equation (Nosofsky, 1986, p.40):

P (RJ |Si) =
bJ

∑
j∈CJ

f(DS
ij)∑m

K=1(bK
∑
k∈CK

f(DS
jk))

(5.10)

Here, f(DS
ij) refers, as above, to the similarity of stimuli Si and Sk based on

distance DS
ij in stimulus space. Capital indexes refer to categories (as in CJ , CK

and RK), and lowercase indexes refer to individual stimuli (as in Si, D
S
ij and

DS
jk). The reaction RJ distinguishes not the individual stimulus Sj , but the

category CJ , with J ∈ {1, 2, . . . ,m}. The bias parameters bJ are also attributed
to the categories and not to the individual exemplars. Equation 5.10 forms the
basis for an extension of the context model, called the generalized context model
(GCM) proposed by Nosofsky (1986). One important difference of the GCM is
that it aims to replicate the effect of selective attention to different dimensions
by integrating further bias parameters in the Minkowski metric which is used
to calculate the distance DS

ij of the stimuli Sj and Si:

DS
ij = c[

N∑
k=1

wk|xik − xjk|r]1/r (5.11)

The conditions on the parameters are that 0 ≤ c < ∞, 0 ≤ wk ≤ 1 and∑
wk = 1. The bias parameters wk are included to model context effects in

similarity judgements. Through these parameters, the stimulus space is warped
or extended in the dimension of the parameter which regulates it. For example,
when the subjects are paying attention to the color dimension of the experimen-
tal stimuli (because it is more salient, the subjects have been primed through
other stimuli etc.), the bias parameter for the color dimension is increased, caus-
ing the stimuli which would have been judged as similar due to similarities in
the other dimensions to drift apart. Since the bias parameters add up to one,
attention to one dimension happens at the expense of other dimensions. The
scale parameter c serves to reflect overall discriminability in the psychological
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space; it increases, for example, with increases in stimulus exposure duration,
or as subjects gain more experience with the stimuli. As an improvement over
the context model, the generalized context model allows continuous values for
stimuli. Also, once a multidimensional scaling solution is derived for the stim-
uli, their similarity is less ad hoc compared to the context model. Evaluating
the experimental data, Nosofsky (1986) claims that “one could make excellent
predictions of categorization performance given knowledge of performance in an
identification paradigm” (p.53). The significance of the GCM is that it further
establishes the viability of using individual experiences for categorizations, with
strong theoretical support for the idea of a psychological space and the role of
similarity in categorization.8

As the aforementioned quote from Shepard (1957) pointed out, the similarity
choice model was not concerned with how learning can take place, but the
performance of individuals at any given stage. The context model and GCM,
on the other hand, offer a glimpse at how categories can be learned, because
they model categorization on the basis of experience with exemplars. Since
these exemplars act as access points to the categories, their instantiation and
processing in category decisions can be the basis for learning categories. One
example of an attempt to extend the exemplar approaches of the context model
and the GCM is that of Kruschke (1992), who presented an exemplar-based
neural network model of categorization, called ALCOVE.9 This model combined
exemplar-based representation with error-driven learning. The neural network
in the ALCOVE model is a feed-forward network with three layers. An input
layer with N nodes encodes the stimuli, with one node for each of N dimensions.
One hidden layer includes nodes which represent the training exemplars. A
new node is placed in the hidden layer with every new training stimulus. The
activation function of these hidden nodes is virtually identical to the similarity
function of GCM. The distance of the jth hidden node with dimension values
(hj1, hj2, . . . , hjN ) from the input vector αin = (αin1 , α

in
2 , . . . , α

in
N ) is computed

as follows (Kruschke, 1992, p.23)10:

d(hj , α
in) = [

∑
i

αi|hji − αini |r)]q/r (5.12)

As in GCM, attention to different dimensions is modelled through the weights
αi. In this equation, q and r specify the kind of distance metric (city-block
versus vs. Euclidean) and similarity gradient (exponential decay vs. Gaussian).
The stimuli in the experiments with which the model is compared are separable,
leading to r = q = 1. The activation value ahidj of the jth hidden node is the

8Exemplar models which are based on featural representation of compound stimuli can,
under certain limiting assumptions, be shown to be formally identical to or a superset of many
other categorization approaches in psychology; see Nosofsky (1990) for a thorough comparison,
especially the figure on p. 413.

9The GCM was an influential model which lead to many similar models with modifications;
see e.g. Aha and Goldstone (1992) for another extension of the GCM.

10As the following explanation and equations demonstrate, the ALCOVE model has a close
affinity to what are called radial basis function networks in neural network research (Moody
and Darken, 1989).
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inverse exponential of this distance with an additional scaling parameter called
the specificity of the node:

ahidj = e−c·d(hj ,α
in) (5.13)

The most important difference of ALCOVE in comparison to the GCM is in
the activation function of the output nodes. Activation of the output nodes is a
sum of the activation of the hidden nodes, with the sum controlled by a weight
between each hidden node and output node (Kruschke, 1992, p.24):

aoutk =
∑
j

wkja
hid
j (5.14)

Learning in ALCOVE is achieved by changing the weights wkj , along with the
attention weights αi, according to an error-driven learning rule. In experimental
comparisons, ALCOVE has proved to model human data as well as GCM and
the context model, and also explained some other phenomena not accounted
for by the other models, such as base-rate neglect and transfer performance
(Nosofsky et al., 1992). As it can be seen from this short overview, the learn-
ing model of ALCOVE introduces more parameters to a model already with a
parameter for each dimension, and further parameters for each exemplar. The
main reason for such a heavy reliance on parametrization is that the exemplars
are taken to refer individual stimuli, which means that the subjects are assumed
to first recognize these, and then make a category judgement. The fundamen-
tal aim of the similarity-based approach to categorization and identification,
avoiding category-level knowledge and relying only on information from indi-
vidual episodes of experience, is thus not completely fulfilled when exemplars
require identification of stimuli. An alternative way of implementing learning is
to include each episode of experience with a stimulus as a separate exemplar,
thereby avoiding the necessity for recognizing a set of sensory data depicting
a certain stimulus. Such an implementation can rely on the theory of catego-
rization based on geometric metaphors as depicted in this section, and at the
same time learn through data accumulation by embodied interaction and low-
level similarity in a psychological space. A learning mechanism based on these
ideas will be presented after a discussion of the role of similarity in theories of
categorization.

5.1.1.1 Similarity

As it can be seen from this short overview of exemplar-based models in the
psychology of categorization, such models rely on storage of sensory data and
similarity for explaining categorization performance. The use of similarity to
ground theories of categorization has been criticized as both being too general
and too specific (Goldstone, 1994). Similarity is too general in the sense that it
is context-dependent, and the respect in which two things are similar has to be
specified in order to use it as an explanatory construct: this practically makes
the idea of similarity a placeholder (Goodman, 1972). On the other hand, it is
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not general enough, because categories depend on other kinds of knowledge such
as theories of the domain (Rips, 1989). However, as Goldstone (1994) argues,
it is not possible to expect similarity to ground all kinds of categories, but only
the most basic ones:

Neither similarity nor category is a unitary construct – there are
variations of each that are importantly different. Similarity cannot
ground all category types. Still, the class of categories for which
overall similarity provides a partial account are an important class
because of their wide inductive potential (p.151).

Furthermore, there are certain kinds of similarities whose robustness have been
proven in psychophysical experiments. These similarities, in experiments de-
signed to override them through category membership rules that contradict
them, have proven to interfere with the categorization task (Allen and Brooks,
1991). 11

In cognitive psychology and AI, there is a common distinction between rule-
and similarity-based processing (Smith and Sloman, 1994). This distinction
can be seen, as Hahn and Chater (1998) argue, as one that relies on the kinds
of representations used in processing: similarity relies on partial matching of
information which has not been abstracted, whereas rule-based processing in-
volves the strict matching of highly abstracted information.12 This abstraction
process corresponds, as it has been argued in Chapter 2, to the extraction of
features from a linguistic description of the stimuli, and any proposed learning
algorithms are assumed to function on these features that correspond to words
in a description. In the above mentioned series of exemplar-based psychological
models of categorization (Kruschke, 1992; Nosofsky, 1986; Medin and Schaffer,
1978), these features are the dimensions of shape, size and color. These dimen-
sions are clearly distinguished from each other, and processes of similarity are
assumed to function on these separated features. As it was argued in Chapter
2, this gives a privileged position to the descriptions humans use, disregards the
distinction between the description of a process and the generative procedure
that underlies such a process and, most important of all, delegates perception
to a secondary status by assuming a kind of pure perception which delivers fea-
tures to a central processing mechanism. This criticism points to an important
advantage of the use of machine learning techniques which rely on raw data and
low-level similarity mechanisms, instead of pre-processing to extract linguisti-
cally significant features: These methods lead to more parsimonious models, in
the sense that the intuitions of the designer are not built in. Furthermore, in the
context of the research presented here, the aim is to understand how symbolic

11See Medin et al. (1993) for a theory of similarity which picks structure as the foundation
of similarity judgements. The criticisms made in the following paragraph on this page are
relevant also in the case of structure: without understanding the processes through which
structure is perceived by human beings, assuming their importance in cognitive processes
simply gives precedence to linguistic descriptions.

12For a recent article questioning the rules versus similarity distinction, and arguing for
commonalities rather than differences in processing, see Pothos (2005).
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representations arise in the first place, and how a group of agents come to create
a lexicon with which such a description can be made. Therefore, it would be
futile to start with such given features.

Further support for both similarity-based and exemplar-based learning
comes form detailed studies of the visual performance of hens. Werner and
Rehkämper (1999) used integral stimuli in a visual discrimination task in order
to test whether chicken responded to the relevant dimensions of the stimuli or
remembered complete stimuli, including additional cues which were uncorre-
lated with reinforcement. A number of effects pointed to the second of these
two possibilities. The first of these results was obtained when the chickens,
which were trained with a set of 9 pairs of stimuli, were switched from this set
in which they were trained to another set of similar stimuli which varied in the
same dimensions, without changing the reinforced dimension. After this switch,
the performance of the hens, which had reached 90% correct in the first trial,
dropped below chance level. If the chickens were abstracting away the relevant
dimension, such a drop in performance would not have been observed. In order
to further test whether chicken were abstracting features, a bigger stimulus set
was presented, and then test trials carried out with a different set of stimuli.
In this experiment, it was found out that the size of the training set did not
effect the performance in the final testing trial, the opposite of what would be
expected if features were extracted by chicken. In a last experiment, the chick-
ens were trained with the whole stimulus set for a high number of trials, and
the dependency of their performance on sets of features on various dimensions
was analyzed statistically. It was found out that “The discrimination behavior
of every hen, even the better learners, depended on cues that were not corre-
lated with reinforcement. Additionally, there was a considerable bias towards
the use of relational information between elements of the whole stimulus array”
(Werner and Rehkämper, 1999, p.35).

In a further extension of this study, Werner and Rehkämper (2001) picked
the 7 best performing hens and tested them in more experiments with the same
stimuli. One particular aim of the study was to compare the predictions of
feature, exemplar and prototype-based theories with the actual performance of
the chicken. One important outcome of the experiments was that, as in the
first group of experiments, instead of the abstraction of a single feature being
the cause of learning, the animals appeared to respond to various combinations
of these features, despite only one such feature predicting reinforcement. Due
to the presence of this effect with each hen in each experiment, the authors
argue that this fact points to not the result of a side effect, but a direct con-
sequence of the differential retrieval of learned exemplars from memory. This
conclusion is further supported by statistical analysis of performance data, and
comparison of the results of this analysis to the predictions of various theories
of categorization. A principle component analysis (PCA) of the pecking rates
of the chicken revealed that the exemplar-based approach was the one that fit
the data the best: “Even though the categories to be discriminated by the hens
were well-defined, the best fit to the data was not the feature-based or elemental
approach, although it is often employed in the explanation of simpler discrim-
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ination tasks [. . . ] Exemplar theory was shown to account better for the data
of this multidimensional categorization task.” (Werner and Rehkämper, 2001,
p.45).

5.1.2 Machine learning aspects

In the context of robotic applications of machine learning methods which process
noisy and low-level sensory data, the problem of machine learning is traditionally
stated as one of function approximation; given data, assume that there is a
function which maps it onto the desired values, and try to compute this function.
In the statistical machine learning literature, two main families of methods
can be distinguished to solve this problem. One family is that of model-based
learning, which matches the variables in the input space, through coefficients,
to a polynomial function approximating the output function. The best-known
method of learning used in this family of methods is the least squares method,
where the coefficients in the polynomial function are picked to minimize the
residual sum of squares, a measure of the error of the approximation. The
second family of learning methods is that of nearest neighbors methods. These
methods are characterized by their reliance on a metric, similar to the ones used
in psychological research on categorization, that decides which sample points in
the training data are the closest to the test point, and combining the values of
these points with their distance to evaluate the test point.13

The main difference between model-based learning and nearest neighbor
methods concerns the assumptions they make about the data to be learned
from. The use of models requires deep assumptions to be made about the data,
since the representation of the data has to be adapted to the model. On the
other hand, these methods generally lead to models that perform well with test
data independent from the learning data. Nearest neighbor methods, on the
other hand, do not necessitate any assumptions about the data, except for a
similarity/distance measure. They also do not make any assumptions about the
shape of the boundaries between categories. As Hastie et al. (2001) point out,
linear models “have low variance and potentially high bias”, whereas nearest
neighbor procedures have “high variance and low bias” (p.16).

As it is apparent from the preceding review of psychological literature on
exemplar-based learning, there is considerable support for a theory of cate-
gorization which does not rely, at least for a theory of basic categories, on
abstracted information and strict feature-matching. The computational prop-
erties of nearest neighbor methods provide further reason to prefer such an
approach. The main advantage of an exemplar-based learning mechanism is
that it does not rely on abstracting mechanisms and features. The representa-
tion of sensory data can thus be left to the specifics of the sensory apparatus,
as long as comparison of different sets of such data is still possible. A further
reason to prefer a lazy-learning approach such as exemplar-based learning is

13See Chapter 2 of Hastie et al. (2001) for an overview. It should also be mentioned that
these two machine learning methods are simply the most basic cases, serving as the starting
point of further research; both methods have been extended and combined with each other.
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that the sensory-motor data in the memory is reevaluated with each episode.
What was called the transactional perspective in Section 3.2 involves the coor-
dination of different levels of cognitive processing in the current task context;
such recoordination, argued to be indispensable for properly understanding hu-
man intelligence, is possible only if previous experiences are brought to bear
on the current situation, without having to use the same context-independent
abstractions as before. From this perspective, what is traditionally treated as
a limitation can be seen as a possibility to implement an alternative vision of
computational modelling.

One further advantage of exemplar-based learning is that it is especially suit-
able for studying reinforcement learning. Reinforcement learning is a statement
of the machine learning problem in terms of maximizing a reinforcement signal.
An external signal, which specifies a desirable behavior or property, is given to
a learning system as a reinforcement signal, whereby this system tries to in-
crease the value of this signal by modifying behavior (Sutton and Barto, 1998).
Reinforcement learning can be understood in contrast to supervised learning,
in which the agent doing the learning is provided with the error between its
response and the ideal response. Reinforcement learning is obviously more re-
alistic compared to such ideal conditions; living beings rarely receive perfect
feedback on their actions, if they ever do. Another advantage of reinforcement
learning is that it gives an agent the chance to discover an environment, devis-
ing its own way to increase received reinforcement; in this sense, reinforcement
learning is akin to genetic algorithms. It must be pointed out that reinforcement
learning is a particular setup for the machine learning problem, and does not
confine the solution to any particular method.

A diagram of the reinforcement learning problem can be seen in Figure 5.1.
An important feature of the reinforcement learning problem, which is common
with most of the other methods and algorithms in machine learning, is the
relationship of the execution of behavior and the input from and output to the
environment: The perception of the state is one time step in the behavioral flow,
the deliberation of the next move is the second, and the execution of a behavior
is the third.

Kernel methods

One other thing to mention about exemplar-based learning is the affinity of
this methodology to a recently developed set of methods in machine learning,
so-called kernel methods. Kernel methods refer to a family of machine learning
methods which use a similarity kernel to map input data into a higher dimen-
sion in order to find out regularities which cannot be elegantly expressed and
efficiently calculated in a lower dimension. Kernel methods are well-studied
in the statistics and machine learning literature, and certain kinds of kernels
have been found out to possess favorable features for studying categorization in
psychology (Schölkopf and Smola, 2001). The most important result regarding
exemplar-based learning algorithms is that in order to find the optimal solution
to a machine learning problem in a higher dimension, it is not necessary to trans-
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Figure 5.1: The reinforcement learning problem. Adapted from Sutton and
Barto (1998).

form the data into this higher dimension, a computationally costly operation.
The similarity of exemplars can serve as the dot product in a higher-dimensional
vector space, allowing an optimal solution to be formulated as a linear combi-
nation of kernel functions centered on the exemplars (Jäkel et al., 2007).14

5.2 Categorization and similarity

In order to study the grounding of communicative symbols in behavioral cate-
gories, what is needed first is an environment in which such categories can be
acquired, and afterwards perceived and acted upon in order to engage in com-
munication. Since the language games framework, discussed in Section 4.2.1.1,
has been accepted as a suitable framework to study lexicon formation, this envi-
ronment must present choices to the agents about which they can communicate.
These constraints have led to the construction of a simulated experimental envi-
ronment, depicted in Figure 5.2. An environment frequently utilized in psycho-
logical experiments with animals, the so-called Y-maze, has been adopted with
the modification that the two different choices are color-coded as red and blue,
in order to facilitate visual discrimination. The Y-maze environment presents a
simple setup for physical interaction with two choices for the agent. The most
important advantage of such a simple maze is that making a choice corresponds
not simply to outputting a symbol or a label denoting a choice, but engaging in
a certain kind of bodily activity. The agent is a simulated robot which is able
to move freely in this environment; it is modelled after a Khepera robot, and
can control its movement by setting the motor speeds of the two wheels on its

14For an overview and mathematical explanation of the many commonalities between fre-
quently used methods in the psychology literature, such neural networks and exemplar-based
methods and kernel methods see (Jäkel et al., 2008). Jäkel et al. (2008) also establish the
special properties of the Euclidean distance measure, or similarity kernel.
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Figure 5.2: The simulation environment. On the left hand side is the environ-
ment as seen on the computer screen. The small window on the top left corner
shows the image from the simulated camera on the the agent. On the right
hand side are three sample images taken by this camera.

left and right sides. Perceptual data in the form of images is obtained through
a simulated camera placed on top of the simulated robot, similar to the visual
turret extension of the Khepera robot.15

As the preceding discussion should have made clear, exemplar-based ap-
proaches allow the development of categorization mechanisms which can operate
on low-level sensory data, as long as this data can be represented in a psycho-
logical space with a distance measure. This property makes the exemplar ap-
proach particularly suitable for an application which aims to model behavioral
categories without abstractions and extraction of features. In the psycholog-
ical applications of the exemplar-based approach, an exemplar referred to an
identifiable stimulus; carried over to a machine learning application, this as-
pect becomes a limitation. Also, deriving the identity of objects from sensory
data and using the representations resulting from such a process would also go
against the situated AI approach, because this would correspond to building a
world model from perceptual data. A better alternative is to use the raw data
from each episode of experience for learning, without distinguishing which ob-
ject or case the agent faces. The exemplars, whose purpose is to represent such
an episode in memory, thus have to include the following elements:

15The code for the simulation environment and the control algorithm can be downloaded
from the following URL: http://www.cogsci.uos.de/~utuerkme/disscode.zip.

http://www.cogsci.uos.de/~utuerkme/disscode.zip
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Figure 5.3: The contents of an exemplar

1. The start sensory state s

2. The action a ∈ A undertaken by the agent

3. The final sensory state f

4. The reinforcement r

For an application which functions in the environment explained earlier, visual
data from a simulated camera is an ideal representation of the situation the
agent finds itself in. Therefore, the start sensory state s and the final sen-
sory state f consist of image data from the simulated camera. It has to be
mentioned here that the sensory states in the exemplars (simply referred to as
states form here on) do not constitute the contents of an agent’s memory in
the traditional sense. The mechanism explained here is intended to implement
situated representations, which then consitute the contents of memory used for
communication, planing and other similar high-level capabilities. Furthermore,
the task at hand can be accomplished using only the visual data, but the in-
clusion of solely visual data should not be taken as a claim that sensory data
form a single source, or only external sensory data, is sufficient for all kinds of
embodied tasks; this topic is discussed further in Section 6.3.

One speed value for the left motor and another for the right make up an
action a. The set of all behaviors A includes a number of different such actions.
For operation in the experimental environment explained here, four behaviors
were sufficient. These behaviors are going forward with two different speeds
(the motor values [10, 10] and [8, 8]), turning left (motor values [1.5,−1.5]) and
turning right (motor values [−1.5, 1.5]). The execution of a behavior is the
setting of the speeds of the two wheels to the values given by the behavior,
waiting for 1.2 seconds, and setting both motor speeds back to 0. The contents
of an exemplar e = (es, ea, er, ef ) are depicted in Figure 5.3, with two sample
images from the camera. The aim of the agents in the experiment is to collide
with one of the red or blue walls, depending on the the experimental stage
which is being carried out (as explained below), and avoid the other walls. The
reinforcement is determined according to which wall the robot collided with, as
detected by the simulation environment.
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The image data is represented as RGB images of size 42 pixels width by 32
pixels height. Each image pixel takes three bytes, one byte corresponding to
one channel of red, green or blue. The distance of two pixels pi, pj , with values
pi,c, pj,c in channel c ∈ {R,G,B} is calculated as follows:

d(pi, pj) =

√ ∑
c∈{R,G,B}

(pi,c − pj,c)2 (5.15)

Before the calculation of this distance, the three different channel values of RGB
are averaged (i.e. R = R/(R + G + B)) in order to compensate for brightness
differences. One can thus say that it is the ratios of the different channels being
compared when pixels are compared, and not the individual byte values. On
the basis of the pixel distance, the distance of two images sa and sb is calculated
as follows:

d(sa, sb) =

∑32
j=1

∑42
i=1 d(sa,ij , sb,ij)

1344
(5.16)

In this equation, sa,ij refers to the pixel in position (i, j) in sa, i being the
horizontal coordinate, and j the vertical coordinate. The total distance of the
individual pixels is averaged over the total number of pixels in an image, 32 ×
42 = 1344. The similarity of two states is consequently computed from the
distance as follows:

sim(sa, sb) = e−µd(sa,sb) (5.17)

In Figure 5.4, sample images and their similarities are displayed. Using this
similarity and a memory of exemplars containing data on which actions was
undertaken in which situation, and the reinforcement received as a result and
the final state, it is possible to calculate feedback values for individual actions.
At the beginning of an experiment, a memory is created, with an exemplar
for each behavior, and randomly generated images as start and final states for
these exemplars. The aim of these random exemplars will be made clear below.
The memory is a simple list of exemplars without further internal structure, and
during the progress of the experiment, new exemplars are simply appended to it.
The feedback for a behavior a ∈ A given camera image sc, denoted by F (a, sc),
is calculated by summing the product of the reinforcement er of exemplars e in
memory which have the action a, with the similarities sim(sc, es) of the start
states of these exemplars es with the current situation sc:

F (a, sc) =
∑

{e∈M |ea=a}

sim(sc, es) · er (5.18)

Once feedbacks for individual behaviors are calculated, probabilities for behav-
iors are computed using the Boltzmann distribution:

P (a | sc) =
eF (a,sc)/τ∑
b∈A e

F (b,sc)/τ
(5.19)

Using this formula, a probability distribution is calculated, with a probability
for each behavior, and the probabilities adding up to one. The reason for using
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Figure 5.4: Sample distances and similarities, calculated using Equation 5.16
and Equation 5.17, with µ = 0.025.
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Figure 5.5: Using a random number to pick a behavior

the Boltzmann distribution is that, on the one hand, negative feedback values
are mapped to positive probability values, albeit approaching zero with lower
values, and on the other hand, the exponential function is increasing, so that
with more positive feedback, the execution probability of a behavior increases,
approaching unity. The τ parameter, traditionally called the heat parameter,
can be used to control the speed of learning; for smaller τ values, an increase
in feedback leads to a fast increase in probability, leading the learning agent
to converge quickly on positive choices explored early in the interaction. The
τ parameter can thus be used to balance exploration and exploitation. In the
task for navigation, τ = 20 was found out to provide a good balance of these
two factors.

Through the described process, behaviors are mapped to probability values,
which reflect the feedback for the behavior in the given state. In order to pick
a behavior using this information, a random number between 0 and 1 is drawn.
Afterwards, the probability values are added progressively, picking the first be-
havior with which the probability sum exceeds the previously drawn random
number. See Algorithm 1 for an algorithmic explanation of this process. An-
other way of thinking about this action selection mechanism is that the actions
are laid on a line segment from 0 to 1, the length of a segment for a behavior
being proportional to the probability of the behavior. The behavior into whose
segment the random number drawn falls is picked for execution, as depicted in
Figure 5.5. This way of balancing exploration with exploitation by using the
Boltzmann distribution to map activation values to probabilities adding up to
one is called the softmax decision rule (Thrun, 1992). The method of select-
ing an option using probabilities mapped to an interval and a random number
picked from that interval is called roulette wheel selection.

Algorithm 1 Action selection algorithm

X ← 0
R← random value between 0 and 1
for each behavior a and its execution probability do

Add execution probability to X
if X > R then

Return behavior a as the behavior to be executed
end if

end for
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One of the most important limitations of the approach presented here is
that the behaviors are hand-coded. As explained above, the behaviors which
are available for the Y-maze are one for turning right, one for turning left,
and two for moving forward. The behaviors for turning right and left have the
same motor speeds, only with different signs. The motor speeds for these two
behaviors were set so that, when they were executed, the robot faced the red
or the blue wall directly, so that the execution of the going forward behaviors
would suffice to receive positive reinforcement.

Using the tools presented until here, associative learning, i.e. coupling of a
certain behavior to similar perceptual situations, can be implemented. Learning
is a result of the accumulation of exemplars; as the agent tries out different
behaviors, the correct behaviors in various situations will receive more positive
feedback, whereas the incorrect behaviors will incur negative feedback. Positive
and negative feedback will lead to higher and lower probabilities, respectively,
and the behavior with higher probability will get executed, leading to even more
feedback, and higher probability. This positive feedback process causes the agent
to rapidly home in on a probability close to 1 for the right behavior, for the
situations in which there is such a behavior. The condition for this convergence
is the visual distinguishability of the situations, i.e. that the similarity of states
which require different behaviors is spread apart sufficiently. In the autoshaping
stage, which will be explained later, the agent is placed facing the red or blue
wall. It takes the simulated agents on average 30 trials until the execution
probability of moving forward is virtually 1.

An important complication, however, appears once we consider how the
agent is to make a decision in a situation which does not offer immediate pos-
itive feedback, but from which the agent can move into a position which can
lead to positive reinforcement. The agent should, in such a situation, base its
decision not solely on the reinforcement which would derive from the immediate
application of a behavior, but additionally on the possibility that the behavior
would bring the agent to a favorable position. In the opposite case, where the
agent makes decisions only based on the feedback which can be derived from
the current situation, it would be impossible for an agent in the intersection
point of the Y-maze in Figure 5.2 to narrow in on an action for turning right
or left, since these actions do not lead to direct positive reinforcement, but are
the first step in a series of movements which would lead to positive reinforce-
ment. The problem, to put it from the standpoint of learning a sequence of
actions to be undertaken for achieving positive reinforcement, can be seen as
the question of how to impute the reinforcement received to the various behav-
ioral steps in the sequence. This problem is called the credit assignment problem
in AI and machine learning (Minsky, 1961). In the particular setup used here,
visual similarity of the consecutive states leading to positive reinforcement of-
fers a relatively simple way of solving the credit assignment problem, which is
implemented as follows. Among the exemplars in the memory, ones with zero
reinforcement are picked out. The final states of these exemplars are aligned
with the start states of the exemplars which have nonzero reinforcement. The
feedback contribution of this combination is then calculated as the reverse ex-
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Figure 5.6: The chaining of exemplars

ponential of the sum of distances, multiplied by the reinforcement of the second
exemplar. This feedback contribution is called secondary feedback, because its
role is secondary, compared to the contribution of direct feedback for immedi-
ate action choices. The total secondary feedback SF (a, sc) for behavior a in
situation sc based on memory of exemplars M is thus calculated as follows:

SF (a, sc) =
∑

e∈M |er=0,ea=a

∑
g∈M |gr 6=0

gr · e−µ(d(sc,es)+d(ef ,gs)) (5.20)

As it can be seen from this explanation, the core idea in this process is to
chain the exemplars and add their distance to arrive at an extended similarity,
corresponding to the separation of the end state from the current state in the
psychological space. This extended similarity is denoted in Equation 5.20 by
e−µ(d(sc,es)+d(ef ,gs)). In this computation, one more behavioral step enters the
behavioral trajectory to be followed by the agent. For computational reasons,
chaining of exemplars was done only for two steps, because for a chain of length
n with a memory ofM exemplars, comparisons on the order ofMn are necessary.
The chaining process is depicted in Figure 5.6. The state images in this figure,
taken from actual experimental exemplars which followed each other in the
movement of the agent, demonstrate the role of similarity in solving the credit
assignment problem in this setup. When the robot turns right to face the blue
end of the maze, the final state of the exemplar created for this movement
has a high value of blue channel. Once the agent faces the blue wall, it will
continue forward towards the end, and receive positive reinforcement after a
few forward motions. The reason the agent moves forward when it faces the
blue wall is primarily that when it is close enough to the wall, in which case
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the blue channel is very high, moving forward causes positive reinforcement,
and the accumulation of these exemplars with positive reinforcement causes the
agent to move forward in cases where it has dominantly blue in the state image.
The next time the agent faces the situation in which it has to turn right to face
the blue wall, the final state of the exemplar formed in the former execution of
the turning behavior will also have a high value for the blue channel, and this
color will be matched with the start states of the exemplars which have been
collected by driving against the blue wall. This way, the agent can engage in a
series of actions which will end in positive reinforcement.

As the description of the experimental environment and the specific learning
problem presented in this chapter make obvious, one of the standard learn-
ing algorithms used very often in reinforcement learning, Q-learning, can be
considered as a viable choice for solving the learning problem presented here.
The Q-learning algorithm (Watkins, 1989) principally involves the calculation
of expected maximum reward for different actions in a reinforcement learning
environment by updating the expected reward for a behavior in a state. The
estimated value of action a in state s at time t, denoted as Q(st, at) is updated
as follows:

Q(st, at)← Q(st, at) + α[rt+1 + γmax
a

Q(st+1, a)−Q(st, at)] (5.21)

This update involves the use of the reinforcement received upon execution of a
action a at time t + 1, rt+1, and the calculation of maximum possible further
feedback maxaQ(st+1, a) that can be achieved from state st+1 in which the
agent will end if an action is carried out.

There are a number of difficulties which make the strict application of the
Q-learning algrithm difficult in our scenario. The first of these is that the states
here do not belong to clear-cut categories, making it difficult to attribute reward
values to behaviors given a state based on a calculated maximum value for that
state. Furthermore, the fact that a lazy learning method is implemented makes
it difficult to buid in a mechanism whereby behavior values are updated at each
step after the sensing of the final state. The fundamental idea of the Q-learning
algorithm –calculating the value of an action in a given state based on the
expected future reward– is nevertheless implemented in a different way through
the inclusion of the chaining mechanism explained above. The maximum reward
for a behavior, here called feedback for a behavior but in effect serving the same
purpose, is updated when a decision has to be made, i.e. in a lazy manner. Also,
each new sensory state is treated as a different state, determining feedback values
for behaviors individually.

The calculation of feedback for a behavior is presented in algorithmic form
in Algorithm 2. To summarize, learning is a result of the accumulation of
exemplars which the agent then compares with the given situation, ordering be-
haviors according to their probability and using a random number to pick one.
The feedback for behaviors is gathered from the reinforcement of the exemplars
which are similar to the current situation and have nonzero reinforcement, mul-
tiplied with their similarity of the start states of these exemplars to the given
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situation, and in addition from the chaining of exemplars, so that feedback is
derived also from other end points in the memory.

Algorithm 2 Algorithm for calculating feedback for a behavior

Set total feedback for each behavior in A to zero
sc ← Current state from camera
for each behavior a in A do

for each exemplar e in the memory with er 6= 0 and ea = a do
Add sim(sc, es) · er to the feedback for behavior a

end for
for each exemplar e in the memory with er = 0 and ea = a do
for each exemplar g in the memory with gr 6= 0 do

Add e−µ(d(sc,es)+d((ef ,gs))) · gr to the feedback for behavior a
end for

end for
end for
Calculate execution probabilities for each behavior according to the softmax
rule.
Draw a behavior for execution

5.3 Language Games

The fundamental idea of language games as an experimental setup to study
communication phenomena between artificial agents has been explained in Sec-
tion 4.2.1.1. The setup used in the work presented here is very similar to that
used by Steels, in that agents with categorization capabilities engage in episodes
of activity in which they use labels to refer to objects. The main difference is
that these categorization capabilities are not based on the splitting of sensory
channels, but on behavioral categories, and the outcome of a round of interac-
tion is signalled with the successful completion of a task. Partly due to these
differences, the experiments consisted of four phases, which will be explained
now (see also Türkmen and Zugic, 2008).

First step: Autoshaping In the first stage of the experiment, all the agents
go through an autoshaping phase. The aim of this phase is to teach the agents
the various possibilities in the environment. In the setup depicted in Figure 5.2,
this consisted of the agents being placed in front of one of the walls with the
red and blue colors and getting positive reinforcement for driving into those
walls, and negative reinforcement for the black walls. This phase ended once
the probability for driving into the designated wall reached 1 (i.e. the underlying
software could not distinguish between 1 and the actual probability when the
probability was displayed in text form). Autoshaping was carried out with both
red and blue side, and took on average 30 trials for each color.
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When an agent is created and placed in front of one of the target walls (that
is, red or blue end walls), it starts with a memory of one random exemplar
for each behavior, with randomly generated start and final images. Randomly
created here refers to images of the same size as those generated by the simulated
camera, but whose pixel RGB values are randomly determined. In the absence
of the random exemplars, e.g. if simply a random behavior is drawn when the
memory is empty, the feedback for the randomly drawn behavior is nonzero,
whereas those for the other behaviors is zero. This leads to this behavior having
a high probability, and getting executed continuously. To avoid the robot getting
stuck in this state, and ensure initial exploration of the environment, each agent
starts with the random memory, which ensures an initial positive probability
for each behavior. Such exploration is necessary not only in the autoshaping
phase, but also in the second step, where the agents have to find out that there
are two possible choices at the intersection.

Second step: Learning to make choices In the second step, the agents
are placed at the intersection of the red and blue paths. Positive reinforcement
is given for bumping into the red or blue walls, negative reinforcement for every
other wall. The criterion for finishing this step is that the execution probabilities
of two behaviors are higher than the others and close to each other. The feedback
for these behaviors is a result of the chaining of exemplars, with the exemplars
with positive reinforcement from the first step providing connection to the blue
and red target walls through similarity. When agents are trained in this setup,
they learn to either go right or left, with the probabilities of the two behaviors
close to each other and their sum close to 1. This is the state from which the
agents are integrated into language games.

Algorithm 3 Behavior of an instructor in the training before a language game

Considered label ← Null
Labels already considered ← Empty set
while instructor is being trained do

Behavior choice & applicable labels ← Evaluation of the situation
if (Considered label = Null) then
if There is a label L which is among the applicable labels and not in the
set of labels already considered then

Considered label ← L
Add L to the set of labels already considered

end if
end if
Carry out selected behavior and pick reinforcement
if (reinforcement < 0) and (Considered label 6= Null) then

Considered label ← Null
end if

end while
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Third step: Training of an instructor In the third step, one agent that
has gone through the first two steps is picked randomly as an instructor. This
agent is then reinforced to make one of the choices in the task space. The
procedure is the same as in the first step, except that only one of the choices is
reinforced, and the robot starts from the intersection point, and not facing one
of the walls. This step continues until the agent makes the right decision (that
is, the path that is being reinforced in this training stage) a certain number of
times in a row. This agent will serve as the instructor in the following language
game. As it will be explained later, the number of consecutive runs in which
the instructor had to make the same choice – the instructor success threshold
– had a significant effect on the number of errors made and the emergence of a
vocabulary.

One means available to the agents, and that is employed by the instructors
and the students, is the accumulation of the exemplars which contribute to the
different decisions for the detection and application of a label. The exemplars
which are accumulated are the ones which have positive reinforcement, and
the distance of their start state from the current state (in the case they are
the second in a chain, the distance of their start state from the end state of
the first exemplar in the chain, plus the distance of the start state of the first
exemplar from the current state) is under a threshold. In the experiments, such
a threshold of 0.12 was found to be functional. Because the decisions are made
from a position which did not lead to any positive feedback with one single
movement, these exemplars are mostly those that are second in a chain of two,
with the first exemplar containing a turning movement. A label is added to the
set of applicable labels in a situation when it is attached to more than half of
the accumulated exemplars for a behavior. It should be mentioned that, due to
the interplay of the memory and communication mechanisms, the labels were
generally attached to all of the exemplars accumulated for a specific behavioral
decision. The agents use this exemplar accumulation and label determination
mechanism to find out the applicable labels for use in three different situations:

• For transmission to the interlocutor

• For interpretation of a received label

• For the coordination of the individual behavior

Another mechanism necessary for using a label is what is here called “consider-
ing” it, i.e. using it for coordinating behavior, be it for finishing the instructor
training faster or for trying out a label in order to find out its meaning. When
a label is being considered, during the evaluation of the current situation for
the picking of a behavior, the feedback from the exemplars which include this
label is multiplied with a positive constant so as to disproportionately increase
the chances of the behavior coupled to this label. The considering of labels is
illustrated in Figure 5.7.

If the agent picked as an instructor and undergoing the instructor training
stage already has a label for the choice which is being reinforced, it uses this
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Figure 5.7: The use of labels when label LBL1 is being considered.

label for making the correct choice, thus finishing the instructor training step in
a shorter time and without having to learn through the collecting of exemplars
the correct choice. When the instructor makes a decision, it also determines
whether there are any labels which apply in the given situation. Once these
labels are determined and an action is carried out, the reinforcement received
is used to find out which decision is being reinforced. A label corresponding to
the reinforced choice is then picked as the label according to which the behavior
is coordinated. Just as in the interpretation of a label by a student, this picked
label is further used to make the correct choice, without having to go through
the repetitive process of reinforcement learning. The pseudo-algorithm for the
behavior of the instructor can be seen in Algorithm 316.

As this experimental step makes clear, the choice which has to be communi-
cated among the agents in the language games is given to the agents not directly,
but by having them engage in embodied interaction, and providing appropriate
reinforcement. The instructor does not rely on an internal representation of the
choice that was reinforced when it is asked for a label to be interpreted by the
student in the next experimental step. Instead, it makes an evaluation to pick
an action, and grounds the label it generates on this evaluation. Furthermore,
in case the instructor has already engaged in a language game and has labels
for actions, it can use these labels to coordinate its behavior. As it will be ex-
plained in the following paragraph, the instructor selects the exemplars which
contribute to a decision. When a positive reinforcement is received, and the ma-
jority of the exemplars which contributed to that decision have a label attached
to them, the instructor picks this label as the currently considered one. In the
further trials in the third experimental step, the feedback from the exemplars
which include this label is multiplied with a positive coefficient when picking a
behavior, leading to the same decision being made consistently afterwards.

Fourth step: Communication In the fourth step, a student is randomly
selected from the population of agents, excluding the current instructor. The

16The label exemplar mechanism which was added as a selection mechanism after the first
set of experiments is also included in this algorithm.
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Algorithm 4 Behavior of a student in a language game

Considered label ← Null
Meaning of label was guessed ← False
while language game is not over do

Behavior choices & applicable signs ← Evaluation of the situation
if there are two choices for actions then

Ask instructor for label L specifying direction
Considered label ← L
if L is not among the applicable signs then

Guess one of the choices (B) as the correct one
Meaning of label was guessed ← True
Attach L to the exemplars contributing to a decision for B

end if
Behavior choice ← Evaluation of the situation

end if
Carry out last selected behavior and pick reinforcement
if (reinforcement < 0) and (Considered label 6= Null) and (Label was
guessed) then

Remove label from the exemplars to which it was attached
Meaning of label was guessed ← False

end if
if (reinforcement 6= 0) and (Considered label 6= Null) then

Create exemplar with label and reinforcement
Considered label ← Null

end if
end while
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student is placed at the intersection of the red and blue paths, in which position
it has to make a choice, because the possibilities for going down one of these
paths are comparable to each other. The student is also able to accumulate
the exemplars which contribute to decisions, and find the applicable labels in a
situation, as explained on p. 122 in the discussion of the instructor.

In order to decide on which path to take, the student “asks” the instructor,
which has already been reinforced for one of the directions in the third step, for
the direction to take. The response comes in the form of a three-letter word,
which the instructor produces as follows. The instructor receives the image
data which the student received, and evaluates it according to its own database,
picking a behavior for execution.17 The probability that the behavior which
would lead the instructor in the direction which was reinforced in the third step
is picked is high, but this is not guaranteed, which leads to the possibility of
communication error. When the instructor makes a decision this way, it also
selects the exemplars which have substantially contributed to this decision, just
like the student. A label is then created or selected according to the following
rules:

• If none of the selected exemplars has a label, create a word of three random
letters.

• If the selected exemplars have only one label, return this label.

• If there are more than one labels attached to the selected exemplars, return
the one which has been used or learned first.

These rules have turned out to be too simple, and a new way of picking labels
has been devised, with a memory for label utterances. This mechanism will be
explained later.

The student, after receiving the sign, checks whether the sign is among
the applicable signs for this situation, applicability being determined through
the exemplar accumulation and label detection mechanism explained above.
If the sign was not among those in the exemplars similar to this situation, a
random choice is made among the choices. The received sign is then attached to
those exemplars which have been computed to contribute to the random choice
made. Once this process of sign exchange is completed, the student reevaluates
the current image. In this reevaluation, the received sign is considered, i.e.
the feedback from the exemplars which include the label currently being tried
out is multiplied with a positive coefficient, as explained above and shown in
Figure 5.7. The probability for the random choice behavior is consequently
much higher than the other ones. A behavior is picked, most probably the
guessed choice, and carried out, after which the student arrives at one of the

17The availability of the current state to the instructor as it is given to the student is one
more significant weakness of the model. The problem of how an agent can appropriate the
point of view of another is a hotly disputed and significant topic in cognitive science, most
recently discussed in the context of mirror neurons and theory of mind (see e.g. Gallagher,
2001). Simply passing on the same image as the current status is a simple solution to this
problem.
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end points. If the arrived endpoint is the correct one (the one picked at the
beginning of the third step, and for which the instructor was reinforced), the
agent gets a positive reinforcement; else, a negative reinforcement. In the case
of positive reinforcement, the label which was attached to the exemplars is kept.
Otherwise, the label is deleted, and the memory of the student is restored to
its earlier state without the attached label. An algorithmic explanation of the
behavior of the student can be seen in Algorithm 418.

At the end of a communication game, the instructor deletes the exemplars
which were acquired during the instructor training. If these exemplars are not
deleted, it takes the instructor a considerable amount of time until it learns to
make a different choice in another episode in which it is an instructor, and the
database becomes bigger, which lengthens the processing time for a decision.
In a complete language game experiment, the third and fourth steps are re-
peated with different agents. In this process, the agents do not acquire any new
exemplars, but the labels which are attached to these exemplars is changed.

5.4 Experiments and Results

In this section, various experiments carried out with agent populations of two
different sizes (5 and 10 agents) consisting of agents trained to different degrees
are explained and their results presented. In order to account for the vari-
ous factors obstructing the emergence of a vocabulary which appeared in the
progress of the experiments, different measures were implemented. The results
of the experiments are presented in the form of graphs of the number of suc-
cessful communication rounds in the last set of trials, with the size of this set
depending on the size of the population, plotted against the number of trials
in total. This enables a continuous visualization of the change of success in
communication, at the same time giving sense of how long it takes to reach this
degree of success. The experiments are carried on until the population reaches
a pre-determined number of consecutive successful communication rounds; 10
rounds for 5 agents, and 20 rounds for 10 agent.

Using the above explained setup and computational mechanism, five agents
were trained until the third phase. That is, these five agents, when placed in
the intersection of the blue and red paths, had virtually two choices to make.
Initially, the instructor success threshold for consecutive choices were set to 3
rounds. In this condition, the chances for error in communication stem from
the instructor being trained for one choice, but failing to make that choice when
asked for a label. At the end of the instructor training step, the probability
for the instructor to make the reinforced choice when asked for a label is on
average 0.6. Therefore, there is a chance of on average 0.4 that the instructor
makes the wrong choice, giving to the agent a label corresponding not to the
reinforced choice for that session, but to the incorrect one. If the student fur-
thermore makes the correct choice, leading to positive feedback, there are now

18In Algorithm 4, the label-exemplar mechanism which will be explained below is also
mentioned; in the first batch of experiments, this mechanism is not available.
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Figure 5.8: Lexicon formation with 5 agents and an instructor successful thresh-
old of 3. Total number of correct responses in the last 10 trials is plotted against
the number of trials run. Despite the considerable number of trials run, the suc-
cess rate does not stabilize.

two agents with the same label referring to different paths. This becomes a
source for continuous errors in the population, because there are no error cor-
rection mechanisms; the agents always pick the label which they either created
themselves or used correctly when given by an instructor, as explained above.
Furthermore, one such error in the early phases of the experiment leads to the
arising of two groups of agents, each using the label with a different meaning.
The reason for this is that the two agents which erroneously arrived at different
meanings for the labels keep on using these labels in further language game
episodes. The results of an experiment with an instructor success threshold of
3 are shown in Figure 5.8. In this figure, the number of correct communication
attempts in the last 10 rounds is plotted against the number of trials which have
taken place. As it can be seen in this figure, complete success is never reached,
and the agents fail to converge on a vocabulary19.

Increasing the instructor success threshold to 5 makes a big difference. With

19It should also be mentioned here that due to the nature of the experimental setup, involv-
ing a three-dimensional simulation, and the characteristics of the learning algorithm, with a
comparisons of huge number of images at each decision step, the experiments take a consider-
able time to run. The above experiment which led to close to 200 trials to be performed took
in excess of 6 hours to run.
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Figure 5.9: Lexicon formation with 5 agents with an instructor successful thresh-
old of 5. Total number of correct responses in the last 10 trials is plotted against
the number of trials run.

this higher threshold, the instructors have an average probability of 0.85 of
making the correct choice when the student demands a label. This higher level
of certainty leads to much lower chances for making an error. The results for an
experiment in which five agents engaged in language games with an instructor
success threshold of 5 rounds is shown in Figure 5.9. As it can be seen in this
figure, the agents have managed to reach and maintain 100% correct for 7 trials
in the last 10 trials at the end of a total of 57 trials. It must be mentioned
that there is still a chance of an error being made, because the probability that
the instructor makes the decision reinforced in that round is not unity. Such
a perfect probability is the case only if there is already a label for the choice,
as explained above. If an error does not happen in the early rounds of the
experiment in which the labels for choices are established, the population of
agents is able to agree on a vocabulary as shown in Figure 5.9.

In order to observe the effect of the size of the population on the formation
of a vocabulary, the five agents mentioned above were each duplicated once,
arriving at a population of ten agents. The exemplar basis, which provides the
data on the environmental interaction on which the communication is based,
is same for two sets of five agents in this community, but this does not have
any effect on the dynamics of the label exchange, because the databases are
copied (they simply point to the same images), and the labels are attached to
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Figure 5.10: Lexicon formation with 10 agents, instructor successful threshold
5. Total number of correct responses in the last 10 trials is plotted against the
number of trials run.

different exemplars. The results of the experiment with ten agents is displayed
in Figure 5.10.

As it can be expected, the bigger population takes longer to arrive at a
common lexicon than the smaller one. However, both populations are eventu-
ally able to communicate among each other on which path to take. Successful
communication is a result of each of the agents learning all the labels that are
used by the others. This fact can be seen in Figure 5.11, which depicts the
number of different signs used in the last 10 rounds in the experiment of which
the results are shown in Figure 5.10. There is no convergence in the labels used,
and the number of labels used stays constant, meaning that the agents which
are picked in later stages in the language game learn the labels created earlier
in the game. The reason for this is that there is no mechanism which leads the
agents to prefer labels which are used more often and more successfully. Such
a mechanism would further lead to the avoidance of errors, because through
the elimination of labels which are used differentially, the emergence of groups
of agents with different label-choice couplings would be prevented. In the next
section, the implementation and effects of such a learning mechanism will be
discussed.
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Figure 5.11: Number of different labels used in the last 10 rounds in a language
game experiment with 10 agents, plotted against the number of trials run.
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5.4.1 Probabilistic label selection

The simple label selection algorithm in which the agents use the labels which
they learned or used the first time does not reliably lead to the formation of a
vocabulary. This mechanism is also not conducive to error correction, in that
the communication errors stemming from the use of the same label for different
choices lead to repeated mistakes in communication, and the formation of groups
which use the same label to refer to the same thing. In the overview of work on
language games in Section 4.2.1.1, it was argued that a necessary process for the
creation of a vocabulary is self-organization. The agents should use the more
successful labels more often, in order to ensure coherence in the population. In
the example of Steels and Kaplan (1999a), self-organization is achieved through
the use of weights between words and meanings, increasing the value of such a
weight between a word and a meaning when a word was used successfully in order
to refer to a meaning. A similar effect can be achieved in the model presented
here by using the action selection mechanism explained above to choose labels
according to their successful use in communication. What is necessary for such
a mechanism is a memory of utterances made and interpreted. Such a memory
would correspond to the weighting mechanism of Steels and Kaplan (1999a),
albeit without a single weight being connected to a meaning but with a set of
exemplars.

The label memory G implemented to this end contains exemplars g which
consist of a start state gs, a label gl, and the outcome of the language game gr,
i.e. g = (gs, gl, gr). Such an exemplar is stored by the speaker and the listener
in each language game. The start state is the perceptual state in which the
agents are when the language game takes place. Once the listener interprets the
received label and receives a feedback, both agents store an exemplar g with the
final outcome(gr = +1 for successful communication, gr = −1 otherwise), the
start state and the label. When an agent has to give a label to another agent,
a procedure very similar to the selection of a behavior is applied. In case there
is just one label for the behavior drawn by the speaker, this label is given to
the listener. Otherwise, feedbacks are calculated for all labels in the database,
and a label is drawn according to the softmax decision rule as in Equation 5.19,
based on the feedbacks from the exemplars. The feedbacks are calculated as
with the behaviors, according to Equation 5.18, with two differences. The first
is that the behaviors in equation 5.18 are not matched; that is, which direction
was signalled with the label is not included in the selection of the exemplars. It
is rather the labels which are matched:

F (l, sc) =
∑

{g∈G|gl=l}

sim(sc, gs) · gr (5.22)

The second difference is the value of the τ temperature parameter in equation
5.19, through which probability values for the labels are obtained. The temper-
ature parameter for behavior selection is relatively high, in order to lower the
learning rate to enable discovery. In the language games, on the other hand,
it is desirable that the agents learn at a faster rate, because the lexicon would
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Figure 5.12: Lexicon formation with 5 agents and probabilistic label selection.
Number of successful communication attempts in the last 10 trials is plotted
against the number of trials run. The population reaches 100% correct in the
last 10 trials and maintains it after 144 trials.
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Figure 5.13: Lexicon formation with 10 agents and probabilistic label selection.
Number of successful communication attempts in the last 20 trials is plotted
against the number of trials run. The population reaches 100% correct in the
last 20 trials after 262 trials.

otherwise stabilize in a much higher number of communication rounds. There-
fore, the temperature value for the label selection process is one tenth of that
for behavior selection, with τ = 2.

The results of the experiments with probabilistic label selection are shown in
Figure 5.12, where the population consisted of 5 agents, and Figure 5.13, where
the population consists of 10 agents. As it can be seen from these figures, the
agents manage to arrive at a lexicon also with the probabilistic label selection
mechanism. The more interesting data, however, is the numbers of labels used
and the co-occurrence frequency of the labels with the intended directions. The
change in the number of labels used can be seen in Figure 5.14 for the experiment
with 5 agents and Figure 5.15 for the experiment with 10 agents. In both
experiments, the agents initially create a large number of labels. At the end
of the first 10 trials, the population with 5 agents has 7 labels in use, and the
population with 10 agents uses as much as 11 labels in a set of 20 trials. Each
individual that acts as a speaker creates a new label if it does not already have
one, leading to a proliferation of different labels. However, once all the agents
have been involved in a communication round with each of the choices (blue
and red), certain labels –especially ones which were used correctly the first time
they come into play– get picked, and the more successful ones are selected more
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Figure 5.14: Number of different signs used in the last 20 rounds in an experi-
ment with 5 agents, plotted against the number of trials run. As the population
agrees on a limited number of labels for communication, the success rate in
communication increases.

often. At the end, both populations converge on 3 labels, 2 for Blue and a single
label for Red.

The convergence of the community on a few signs for the different choices
can be seen more clearly in Figures 5.17 and 5.16. These depict the times each
label was used in the last 10 or 20 trials on which Red was the given direction
in experiments with 10 agents and 5 agents, respectively. As it can be seen
from the figures, the communities arrive at single signs for the direction red
in both experiments. In the community with 10 agents, a different label is
used only once in the last 20 trials. The agreement of the community on the
labels corresponds to the achievement of 100% correct communication, which
shows that communicative success and the creation of a common vocabulary
are parallel processes.
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Figure 5.15: Number of different signs used in the last 20 rounds in an experi-
ment with 10 agents, plotted against the number of trials run. The population
starts with 11 labels, but through the progress of the experiment, arrives at 3
labels in total, 2 of these for Blue, and a single label for Red.
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Figure 5.16: Co-occurrency of different labels with Red as the direction to be
signalled in an experiment with 5 agents, plotted against the number of trials
run. The agents agree on a single label for referring to Red, at the same time
increasing their communicative performance.
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Figure 5.17: Co-occurrency of the labels with Red as direction in an experiment
with 10 agents. A comparison with Figure 5.13 shows that the improvement
of performance in communication games happens at the same time with the
agreement on a single label. Labels which were used only a few times have not
been included in this graphic in order to avoid clutter.



Chapter 6

Discussion

The preceding chapters have argued for understanding the symbolic representa-
tions used by humans in terms of situated representations. The distinguishing
features of these kinds of representations were claimed to be their co-dependence
with perceptual processing, and their public nature. The public nature of situ-
ated representations entails, as argued in Chapter 4, using multi-agent models
for synthetic studies of situated representations. A dual role for symbolic repre-
sentations was proposed, whereby they are created in communicative situations,
but later serve agents in their individual behavior. These processes of creation
and use were further studied in a computational simulation of a group of agents
operating in a simple three-dimensional maze. This maze offered choices for the
agents to take, and these choices served the agents to ground symbols. Situated
representations were theorized to be a result of the intersection of the processes
of communicative symbol use, self-organization of vocabularies and the utiliza-
tion of such symbols in embodied behavior. One of the aims of the model was to
understand situated representations in terms of the transactional perspective,
according to which perceptual and motor data, concepts and names for things
are coordinated in parallel.

The results of the computational model, presented in Chapter 5, show that
it is possible to ground symbols in the embodied behavior of the agents. Com-
munities of agents have been demonstrated to be able to arrive at a common
vocabulary, referring to the choices in the environment with artificially cre-
ated words and further using these words in their own embodied behavior in a
situated manner. In this chapter, the significance of the results and the short-
comings of this particular approach and the model presented will be discussed.
Some further extensions and improvements which can be made to the model
will also be considered.
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6.1 Language games and embodied grounding of
symbols

In the synthetic studies of the dynamics of communication, the underlying idea
of what purpose symbolic communication serves, and which fundamental pro-
cesses enable agents to correctly use symbols in communication (what was taken
to be a useful definition of meaning in Section 4.2) are evident in the organi-
zation of the experiments. For example, the evolutionary condition that suc-
cessful communication should increase the survival chances of the individuals
of a community are present in nearly all studies of the evolutionary emergence
of communication. A tendency which was criticized in Chapter 2, the tendency
to equate successful reference to objects or situations in the environment with
task-independent internal representations, is one similar preconception that has
a direct effect on the design of the experimental setup for language game exper-
iments. The central contribution of the work presented here is the experimental
setup used, and the conception of meaning which accompanies it, also affect-
ing the design of the agents. Instead of understanding the process of meaning
creation as located in a separate sphere to which individuals have private ac-
cess, this process is viewed as a common way of organizing embodied behavior,
which the individuals can then use for their private purposes. The final result
is a community of agents which have differing individual experiences with the
environment, represented in the form of a memory of exemplars. These agents
command the same representational vocabulary for manipulating these differ-
ing memory stores and organizing their behavior conforming to the behavioral
standards set by the reinforcement paradigm.

The reasons such a conception of meaning can be studied using the setup
presented are twofold. First of all, reinforcement is given to the agents partic-
ipating in a language game for the successful completion of an embodied task,
in this case the navigation of a simple maze. The identification of choices which
can be the subject of the episode of communication are not simply perceptual,
but require action on the part of the agents. Successful communication about
an object is not directly rewarded; what is rewarded instead is the successful
use of communicated symbols in individual activity. This is coupled to the
idea that symbols do not exist solely to correspond to things, but to enable the
agents to organize their behavior in ways that would have been impossible or
much more difficult without them, as argued in the context of situated repre-
sentations in Section 3.3. The second reason is that the interaction between the
agents takes the form of instruction giving. The special aspect to this kind of
social interaction is that, as the work of Chapman (1991) discussed in Section
3.2 also demonstrated, it can build on existing common experience of the agents.
The agents perceive certain possibilities in the environment, and their dialog is
shaped according to these possibilities, taking them as given and as a part of
the situation. The experience on which the communicative acts build is not
of representational character, but instead it consists of low-level sensory data
coupled with behavioral dynamics. This fact leads to the creation of symbols
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as resources to use, instead of as parts of internal world models, to which the
agents have privileged access.

The language game in which the agents engage is just one kind of such game,
a game which can be called the instruction giving game. The interpretation of
the symbol given by an agent thus corresponds to applying the given instruc-
tion, and trying out a certain kind of interaction in order to determine what the
agent giving the instruction intended. One can envision other kinds of language
games in order to model other kinds of interpretation, games in which the inter-
pretation of the received symbol would involve a different kind of activity. An
example for such an interaction is two agents cooperating at an activity, and
using communication to coordinate with each other. This and other similar lan-
guage games are a natural way to extend the setup presented. The used setup
also makes clear that the language game in which the symbols were created and
used is the basis on which a conception of the meaning of these symbols can
be developed. In other language games, the symbols would acquire other roles,
thereby extending the meaning of the symbols. An interesting question is how a
symbol generated in the context of one language game could be used in another
one; for example, the effects of using a symbol created for instructing another
agent in information transfer, or the coordination of a group of agents.

One of the topics discussed was the role of training in correct communication.
In the instructor training phase, the instructor goes through a number of runs
in which the topic of the communication round is reinforced. If the number of
these runs is low, the probability that the instructor picks the correct choice for
attaching the label which it returns is not high. This leads to the probability
that the agents attach a label to different choices, and further propagate these
connections, leading to the creation of groups of agents that refer to different
choices with the same label. When the number of these instructor training
runs is increased, the probability of such errors decreases. One point of view
that can be taken to put this phenomenon into context is understanding it as
a reflection of embodied domain knowledge on communication. For a coherent
communicative toolbox to arise, the agents should command a certain knowledge
of their environment, both in the sense that they should be able to sense the
choices that are available to them, and be able to reliably evaluate the correct
choice of what they want to point out. If their capacities in both of these aspects
is below a certain level, the population will not be able to arrive at a vocabulary.
It was further shown that if the number of errors that are made is relatively
low, a mechanism similar to the one used for embodied behavior can serve as
an error-correction and feedback mechanism, leading to a simpler vocabulary
and the avoidance of erroneous labels. This mechanism was further established
using an utterance memory and a decision mechanism practically identical to
the action decision mechanism, only with different constants which lead to faster
learning.
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6.1.1 Situatedness and the transactional view

Of course, it is perfectly possible to build an agent that functions in the dis-
cussed environment using the traditional methods, by creating a map of the
area with perceptual filtering, creating internal representations for the choices
which can be identified on this map, and then attaching labels to these rep-
resentations to use in communication. The main target of the work presented
was to model situated representations in a synthetic way, and the algorithmic
approach to building the agents was a direct result of this concern, rather than
reaching a high performance according to an independently measured standard.
It was argued in Section 3.3 that what is referred to in a synthetic context as
situated representations draws its inspiration from the human case, but it must
initially stay as an approximation. One must therefore keep in mind what kind
of situatedness the current setup and algorithmic design of the agents allow, and
how far the sort of situatedness implemented here is from the natural human
case.

The idea of situatedness which this model embodies is one of monitoring
and reorganizing of behavior based on sensory information at each behavioral
step. At each step in which a decision has to be made, the whole memory is re-
processed and the individual exemplars compared to the current situation. The
relevance of past experiences is reevaluated with each new situation, whereby the
individual episodes of experience are brought to bear on the current situation,
and contribute to the current decision in accordance with their relevance. This
processing leads to the determination of the actions which can be applied in that
situation, and the symbols which can be used for behavioral coordination. In
other words, symbols and actions are recontextualized with each step, and the
execution of behaviors and utilization of symbols is fundamentally dependent
on their being applicable in a given situation. Furthermore, once symbols and
behaviors are recontextualized, they become part of the situation; agents can
communicate on this basis, as argued above, making their interaction grounded
in the low-level information from the sensors. The sense of situatedness here,
therefore, is close to the role Clancey (1997) and Clark (2005) claim for situated
representations in intelligence, in that symbols created for communication serve
to augment the individual capacities of the agent. An important point here is
that the extraction of such symbols from the memory for use in communication,
for use in individual behavior, and the decision of which behavior to execute are
carried out through the use of similar low-level processes operating on sensory
data, without assuming ad hoc processes on top of the existing machinery for
behavioral learning and embodied coordination.

Regarding situatedness, the principal limitation of the presented model is
that the processing of sensory data is carried out in terms of the standard state-
ment of the machine learning problem as discussed in Section 5.1.2. That is, for
each pattern of sensory input, the memory is processed in an off-line manner.
As a result, during this processing, the robot is not available for reacting to
changes in the environment or to new contingencies. The output, a behavior, is
then executed, and during this execution the robot is again off-line. These two
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off-line phases point to the limits of the situatedness of this approach: Instead
of being directed to the environment continuously, the agent is acting in exe-
cutional steps, sampling the environment and processing data thus gathered to
arrive at a decision. This fact is reflected also in the format in which the sensory
data is gathered and stored, i.e. as static images which contain no information
about the temporal contingencies of consecutive behaviors. The difference be-
tween an agent which is closely coupled to the environment and one that samples
the environment is similar to two people, one following a moving pen with his
eyes, and the other looking where the pen is, closing his eyes, and then opening
them to find where the pen is once more. In the case of a continuously coupled
agent, the internal dynamics are coupled to the external world at each moment.
It is possible to extend the current methodology of exemplar-based learning to
achieve this more genuine kind of situatedness, what can be called dynamic sit-
uatedness. A possible way of achieving dynamic situatedness will be discussed
below.

The concept of situatedness was further discussed in terms of the transac-
tional perspective in Section 3.2. The transactional perspective developed by
Clancey (1997) argues that categorization, symbols and sensory-motor contin-
gencies develop at the same time in behavior, constraining and determining each
other in parallel. In the learning algorithm developed, the symbol to be used
for behavioral coordination is determined based on the contents of the memory.
Afterwards, how the exemplars in the memory affect the current decision pro-
cess is determined by the symbol used to change behavior, which can be taken
as a case of the co-constraining of lower-level sensory information and situated
representations. However, as the above discussion of situated representations
also demonstrated, there are a number of shortcomings in the realization of the
transactional perspective. The first of these is the static and step-by-step nature
of the processing mechanism; the sensory data and symbols are not shaped in
parallel. The second important shortcoming is that the idea of the fundamental
text, the data which cannot be contested, is still prevalent in the form of sensory
data stored verbatim in memory. This data is not modified or shaped to fit a
sensory category, as a result of constraints from other levels. This phenomenon
is observed routinely in humans and is called categorical perception.

6.2 Shortcomings

The most significant shortcoming of the approach presented is the fact that
the behaviors are hand-coded. Especially the turning behaviors are designed so
that the agent faces one of the target walls when it executes these behaviors.
There are only three kinds of behaviors: turning right or left and going forward.
This is the minimal number necessary for carrying out the described language
game experiments in this environment. This would enable one to claim that
there is still internal representation of these choices, with these representations
simply encoded as behaviors. The solution of this problem would be extending
the machine learning mechanism to a regression learning system from simple
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categorization. The machine learning task for the model was stated in terms of
a categorization task, as discussed in Section 5.1. In categorization, input data
is matched onto discrete pre-defined categories. In regression, however, input
data has to be matched onto values from a continuous interval. Extending
the current algorithm to enable a regression task would solve the problem of
hand-coded behaviors.

At first blush, this appears to be a relatively simple extension. In its current
form, the learning algorithm delivers feedback values for the various behaviors.
Instead of calculating activation probabilities for individual behaviors based on
these feedbacks values, one could multiply the speed values for the individual
wheels with normalized feedbacks, thereby arriving at motor speeds which are in
a continuous interval. The main problem with this simple solution was found out
to be that the effect the accumulation of exemplars with positive reinforcement
has in the categorization task – i.e. the increase in feedback and therefore in
probability for the behavior responsible for the feedback – leads to an adverse
effect in case the algorithm is minimally modified for regression. As the feedback
for a certain range of values increases, the accumulation of exemplars leads
to the motor speeds to overshoot, going over the optimal values. This excess
feedback is initially accounted for by negative feedback from resulting exemplars
which lead the robot to end in an undesirable position, but the learning process
continuously oscillates around the optimal range, never settling in the desired
range. Once this problem of oscillating around the optimal range of motor
values is solved, the current learning algorithm can easily be further extended
to accommodate regression learning.

One further important problem, alluded to on p. 125, is one faced by many
multi-agent systems, and involves the shared perception of a scene from differ-
ent perspectives. The instructor and student agents in the current setup both
receive the same sensory data when the student has choices and asks for help
to make a decision. When two people observe a scene, they have differing per-
spectives, but they have an understanding of what the other is seeing. Thanks
to this mutual understanding of each other’s perspectives, humans can refer
to things, which might even be occluded from the perspective of someone else.
This fundamental capability is a very difficult subject, and simply handing over
the same perspectival data to both agents is a simple but unrealistic assumption
to avoid the additional complexity that would be caused by the integration of
a solution to this question into the current model; future work should take this
issue more seriously and offer possible solutions.

6.2.1 Meaning, mattering and language games

One central question which the work presented has not addressed is one that is
relatively vague, and is not usually asked either in AI or in studies of the dy-
namics of language. A glimpse into the nature of this question can be had when
one considers how the experimental steps, i.e. the steps in the interaction of the
student and instructor in a language game, are determined. These steps are pro-
grammed in by the designer, and their communicative purpose and success is a
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derivative of our idea of what constitutes communication, or a prototypical case
of communicative interaction. As explained in Section 2.4.1, Wittgenstein dis-
cussed such prototypical communicative contexts under the concept of language
games. One important feature of language games is that there are numerous
kinds of them. Humans create such games as they see suitable, and they are not
scripted or pre-given: their form derives from the contingencies of the overall
situation, and most importantly, from the aims of the agents, i.e. what they
want to achieve in the given situation, based on their knowledge of the situation
and each other.

Therefore, the main problem can be stated as “what is the motivation for
agents to communicate?” In the setup presented, as mentioned above, the
interaction is programmed in, and the agents are just going through these steps.
If different language games are to be generated – either programmatically or
by the agents – on the basis of what the agents want to achieve in a given
situation, and how this can be done using their resources, the question of why
communication should take place is of central importance. This can be seen
when examples of the creation of language games are considered, for example in
the case where one agent knows that the other one has certain information which
it does not have, so it makes an utterance with which it intends to express its
wish to acquire this information. Such a setting would constitute the language
game of asking a question and answering. Another case, already mentioned
above, would be one where the agents want to coordinate their actions, and
they can achieve this by exchanging symbols which should specify to each other
what each one of them is to do; this would constitute the language game of
commanding.

In the field of language evolution, especially work in terms of artificial life
and genetic algorithms research tries to tackle the problem of how and why
communication can emerge; the work by Quinn (2001), or by Williams et al.
(2008), discussed in Section 4.2.2 are good examples. The most important prob-
lem with these approaches is that communication is still taken as a given, and
as an activity which qualifies the agents for being selected for reproduction; the
fitness function, specifying the successful agents, is nearly a definition of what
the agents have to do in the first place, giving them the standards for commu-
nicative behavior. The question of what forms the motivation to communicate
takes, and how it leads to different language games, is an important one that
has to be addressed by future studies.

6.3 Future directions

There are many directions in which the variation of language games experiments
and communicative agents presented here can be extended. One possible exten-
sion to the current approach which has already been mentioned is the extension
of the learning mechanism to regression learning. The simple version of using
the feedback values as activations of various behavior nodes is unfortunately not
practical, as explained above. If this problem can be solved, the existing model
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can be extended to allow the determination of the optimal motor speed values
autonomously, without the designer having to determine these values and code
them in. Another simple addition is the inclusion of more complicated tasks by
extending the capabilities of the robot, such as a gripping arm. A gripping arm
is available for the real Khepera robot, allowing the picking up and carrying of
small objects. Integrating a model of this physical extension in the simulation
of the robot would allow the manipulation of such small objects in the simula-
tion. When such an object is between the arms of the gripper, its top surface
is in the range of the camera, making this surface a part of the visual scene;
therefore, the simulated camera would still be a sufficient sensory mechanism
for extending the setup with a gripper arm. The learning algorithm would have
to be modified to accommodate the behaviors necessary for picking an object,
but otherwise, the modifications which have to be made to the algorithm ex-
plained in Chapter 5 are minimal. The inclusion of the simple manipulation of
objects (picking them up and carrying them to certain places) would enable the
creation of more complex reinforcement schemes, which would lead to a better
understanding of the phenomena of situated representations.

A more difficult but interesting extension concerns the representation of
a situation. The representation of the situations in the exemplar memory is
limited at the moment to image data from the simulated camera. The advantage
of a single source for sensory data is that a uniform similarity measure can be
easily defined; the Euclidean distance measure currently used can be applied
to the different situations without concern for the weights of different parts,
because the data as a whole belong to one channel. This becomes a limitation
in case other sources of sensory data were to be added to the specification of
a situation from the perspective of an agent. For example, if proximity sensor
data from eight sensors on the original Khepera robot were to be integrated
simply by appending the sensor readings at the end of the image data, the
information from these sensors would drown in the mass of the image data due
to the differences between the amounts of data from these different sources –
3 × 32 × 42 bytes versus 8 bytes. What would be necessary is a weighting of
the different sensory channels according to their significance and the amount of
data they provide. Such a weighting mechanism is a problem that has to be
solved or circumvented by any attempt to include further sensory data into the
representation of a state.

As a more complicated and speculative extension, the idea of a situation can
be broadened not only by including sensory data from different channels, but
also by qualitatively extending a situation both temporally, and structurally.
Temporally, the situations, as they are defined and processed at the moment,
are completely static and contain no information about the sequence in which
sensory data is acquired. The way the perceptual situation is transformed as a
result of the behavioral dynamics is a significant resource from which an agent
can learn, and these transformations reveal more about the way the environ-
ment is structured than static snapshots. The image data is currently saved
without any reference to what has come before it and what comes after, except
for the second image in an exemplar depicting the perceptual state after the
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execution of the behavior. The dynamics of the behaviors, as mentioned above,
are completely ignored. If what was referred to as dynamic situatedness above
is to be achieved, the transformational properties of the environment have to be
integrated into the learning mechanism. A rough outline of a possible method
to achieve this can be drawn as follows. Instead of defining exemplars as sin-
gle images and individual behaviors, a record of the sensory transformation
(i.e. how the sensory state has changed over the course of the execution of the
behavior) and the unfolding of the behavioral coordination can be stored to-
gether as an exemplar. What is then needed are computational mechanisms
to compare sensory transformations with each other and, on the basis of these
comparisons, create a new specification for motor transformations. These mech-
anisms are akin in spirit to those proposed by Tomasello (2000) as the necessary
mechanisms for language acquisition, i.e. computational resources for analogical
reasoning and structure mapping.

A final possibility for building on the presented model concerns the way the
images are saved and compared to each other. The perceptual data is saved in
raw pixel form, and the comparison of the images is done pixel by pixel. The
overlapping of the pixels, i.e. the fact that what is at the top right of an image
will be compared with the top right part of all the other images, is the only sort of
structure which is effective in the processing of perceptual data. In case there are
relatively small details in an otherwise uniform image, these should be paid more
attention to. Learning here is achieved by an accumulation of exemplars, but in
case the feature is small, the learning of this feature (e.g. a small black mark at
the top right of the image) takes too long, and is sometimes even impossible. The
solution can be inspired by natural perceptual systems. Processing in the human
visual system starts in the retina, in that simple features such as edges are
formed through processes such as lateral inhibition. The important thing is that
these processes do not deliver a description of a scene, but modify the perceptual
data to make certain things more salient. A similar effect can be achieved by
modifying the images through simple filters which change the pixel values to the
degree that there is an edge in that area, creating a color gradient around the
edges, or any other features which can be brought to prominence using such a
procedure. This way, the similarity of images with similar features in close areas
can be increased, at the same time decreasing the similarity of images with this
feature and those that do not, without having to create structured images.



Chapter 7

Conclusion

The aim of the work presented here has been to contribute to the debate on
the use of representational entities by living beings, and their explanatory role
in synthetic models of intelligence. This has been done on the basis of a dis-
cussion of how this subject has traditionally been treated in cognitive science
and the philosophical background which has provided the historical seeds for
this treatment. In the spirit of cognitive science, a computational model of the
grounding of a common vocabulary by a community of agents was presented.
“Grounding” here refers to understanding the use of symbols by agents on the
basis of their physical capacities and the situation as it is perceived by them
and organized according to their bodily capacities. Taking the recent advances
in situated and embodied cognitive science as a background, it has been argued
that symbolic representations as they are used by humans are fundamentally
situation-dependent and arise out of social interactions. The situated view of
representations was further brought to work in the multi-agent model of their
production and use by embodied agents. In this concluding chapter, a summary
of the discussion will be given, and the main conclusions will be stated.

One of the central discussion topics in cognitive science and AI in recent years
has been the status of symbolic representations as the central means of intel-
ligence, and as explanatory constructs to explain the mind. A closely related
topic is to what extent language and communicative use of symbols contribute
to the capacities of intelligent beings. The default position on these questions
has been one that took over the individualistic and mentalist tradition of ra-
tionalism, postulating an inner sphere in which the external world is modelled.
The application of this methodology to AI has been the assumption that intelli-
gence is a result of the manipulation of symbols. Symbolic representations were
therefore used extensively in traditional approaches to AI, what was called GO-
FAI by Haugeland (1985). According to this paradigm, also called cognitivism,
the human mind, and possibly any intelligent agent, is a symbol-processing sys-
tem. Symbols in such a system stand in representational relations to entities
in the world. Through the manipulation of these symbols, agents can reason
about the world, and act in a goal-directed and structured manner. The posi-
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tion on communication concurrent with the cognitivist position on the role of
symbols in intelligence is one that attributes to language the role of a vessel, in
that language serves to carry contents of a mental language from one head into
the other. This position has been further bolstered by the dominant linguistic
paradigm, the Chomskian school, which claimed an innate, encapsulated lan-
guage organ, independent of the workings of the rest of the mind, and solely
responsible for the transformation of thoughts into sentences.

The cognitivist position, especially as it was practiced in AI, has run into
a number of technical problems. One example for these problems is the frame
problem, which appears when a symbol-based system has to reason about a
changing world. Another example is the common sense problem, in which the
whole of common sense knowledge has to be programmed in to build a system
capable of reasoning about the most simple human tasks. A more general prob-
lem, which encompasses these two to a certain extent, is the relevance problem.
An agent functioning rationally, i.e. computing an action based on given facts,
faces combinatorial explosion when the number of facts which it has to take
into account grows. Partitioning such a system into modules does not solve the
problem, because information relevant to a situation can come from any one
of the various modules. It was argued in Chapter 2 that these problems were
a result of the individualist and mentalist tendencies of cognitivism; cognition
is seen as going inside the head of individual agents, facing an unknown world
which has to be made sense of, and the community a group of agents which
have to be deciphered.

The enduring technical obstacles in AI and criticisms stemming from similar
concerns in cognitive psychology, coupled with philosophical criticisms of the
underlying rationalist framework, led to the development of a new paradigm
which rejected the representation-centric view of traditional cognitive science,
and instead claimed the primacy of agent-environment coupling and ground-
ing of representational tools in this coupling. This paradigm, called situated
and embodied cognitive science, aimed to understand the high-level capacities
which have been the primary subject matter of traditional AI and cognitive
science as grounded in and fundamentally dependent upon the so-called low-
level capacities, such as embodied behavior, and social capacities. The most
significant claims of the situated-embodied paradigm have centered around the
role of internal models and symbolic representations in AI. Against the detach-
ment of artificial agents from their world through the use of internal models,
the tight coupling of agents with the environment with sensory-motor loops
has been championed, under the motto “the world is its best own model”. In-
stead of seeing mental representations as private resources to which an agent
has privileged access, and through which it can reason about the world without
engaging with the world, representations were studied as resources which have
to be interpreted, in a similar way to maps or plans for activity. This point also
opens the way to an alternative understanding of the role of language in human
behavior, namely as a resource which can also be used in individual activity.
Relying on this alternative understanding of symbol use, various theories of the
use of linguistic means by the individual have been proposed. To summarize,
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the situated and embodied approaches have concentrated on how behavioral
capabilities are adapted to their environment, how they can appear structured
and planned by being coupled to the regularities in the environment, and how
symbolic capabilities derive their benefit for the agent from their situation- and
context-dependency, instead of their being abstract context-independent enti-
ties.

The insights from embodied-situated cognitive science into the role of com-
munities in the creation of meaning, coupled with the multi-agent modelling
methodologies developed especially in artificial life, have led to the development
of the field of evolution of language. This field studies the emergence of a vo-
cabulary in a community of agents which interact locally, communicating about
meanings – either as concepts in the head or about objects in the environment –
and updating their behavioral strategies as a result of the success of these com-
municative episodes. These studies are methodologically either based on genetic
methods, or use agents with learning algorithms. They can further either be sit-
uated, in that the agents function in an environment and the symbols they use
in communication refer to the objects in this environment, or alternatively they
communicate about pre-given meanings. Various experiments with different
kinds of agents in different environments have shown that a community consist-
ing of agents with certain mechanisms can achieve a common vocabulary, i.e. a
common means of referring to shared meanings. Among the useful mechanisms
for converging on symbols are self-organization, common means of categoriza-
tion, reinforcement learning on the results of communication, and selection of
the successful symbols. An interesting possibility offered by the multi-agent
modelling of the emergence of symbolic communication is that symbols created
in communicative contexts can further be used by the individual agents, offering
a way of modelling symbol creation and use without falling into the trap of an
internalized language.

If this possibility is to be realized, a number of lessons learned from situated-
embodied AI have to be taken more seriously. The models of the dynamics of
communication have a number of shortcomings, stemming from deep-seated
convictions on the role of language, and how communicative symbols relate to
meanings. These shortcomings exhibit themselves primarily in the organization
of the experiments, where the aim of the agents is to communicate correctly,
and they receive reinforcement for doing so. Because the agents have to sim-
ply transmit labels referring to the correct objects or meanings, the degree of
their situatedness is also limited. In studies on the evolution of language, this
bias takes the form of choosing the agents for reproduction which are the most
successful in communicative tasks.

As a proposal on how the studies in the dynamics of language can be im-
proved based on the discussions on the role of representations in intelligence,
and the overview of work done in this field, an experimental setup, and a model
which functioned in this setup, were presented. The main aim of the presented
setup is to embed communication and the use of symbols in a concrete task con-
text, and avoid delegating to the symbols solely the role of labels for internal
representations. This is achieved by giving reinforcement not for successfully re-
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ferring to an entity, but instead for the successful completion of a task. In order
to achieve situatedness, this task involves an embodied coordination problem.
The embodied coordination problem requires a physical environment, which was
in the case of the setup presented a simulated Y-maze. This Y-maze presents
the agents with two choices to make. These choices, going left or right, are color-
coded as red or blue, in that the end locations and the paths have these colors.
The agents are simulated Khepera robots with two wheels as actuators, and
speeds for these wheels constitute different behaviors which enable the agents
to navigate the maze.

An episode of communication between an instructor and a student consists
of the instructor being trained to make a certain choice (left or right) in this
maze, and afterwards giving the student a symbol corresponding to this choice.
The student then has to make a guess as to which direction this symbol cor-
responds to. Based on the reinforcement which it receives when this guess is
executed, the student either keeps the symbol or discards it as incorrect. The
learning algorithm for the agents is similarity-based, and uses exemplars for the
representation of episodes of action. The contents of the exemplars consists of
the start and end states in the form of image data, action undertaken, and the
reinforcement received for this action. The images are compared to each other
using the Euclidean distance and similarity is calculated from this distance with
the reverse exponential. At each behavioral step, feedbacks for the various be-
haviors are calculated based on the exemplars in the memory. These feedbacks
are then converted to probabilities. On the basis of these probabilities, a be-
havior is drawn for execution. In order to avoid the credit assignment problem,
similarity is used to chain exemplars in the calculation of feedbacks.

Experiments carried out with this setup and agent communities of different
sizes have shown that in such a setup the self-organization of a vocabulary can
be observed. The most important condition for the emergence of a vocabulary
is that the probability of communication error, stemming from the instructor
making a different choice from the topic, is not too high. Without a selection
mechanism, the emergence of the vocabulary takes the form of each agent learn-
ing each and every label through repeated games. In order to better model the
emergence of a vocabulary, an additional memory of utterance exemplars was
created. This memory includes exemplars which represent an episode of commu-
nicative interaction, with the label used and the outcome of the interpretation.
Through the use of this memory, more successful symbols are used more often,
leading to the emergence of a simpler vocabulary.

The model presented here is limited in many respects. The experimental
environment is too limited, in that only two choices are presented to the agents.
In parallel with the limitations of the environment, the motor and perceptual
apparatus of the agents is also relatively limited, with only two motors as actua-
tors and a simulated camera for perceptual data. Also, due to the specific nature
of the learning algorithm, the individual behaviors have to be hand-coded. In
order to improve on these aspects, a number of possible extensions have been
proposed in Section 6.3. Some examples for these extensions are including ob-
jects that can be manipulated and a robotic arm which can move these around,
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or including data from other perceptual sources. The action selection mecha-
nism can be extended to carry out regression on the image data, and not just
simple categorization. Other more promising extensions concern the represen-
tation of the start and end situations. Instead of saving the images as they are
received from the simulated camera on the robot, certain salient features on
the image (such as edges, lines etc.) can be brought to bear on the similarity
without creating a structured representation of the scenes. This can be done by
modifying the image to create gradients around these features. A speculative
but very interesting extension concerns the coupling of the behavioral dynamics
and the perceptual transformation in order to arrive at an alternative way of
representing exemplars. The crucial component of such an extension would be
an algorithm for generating various behavioral transformations based on how
the perceptual transformations have been affected by the different behavioral
dynamics, as such information is available in the memory.

The role of language in intelligent behavior and the status of symbolic repre-
sentations in models and natural beings are crucial topics for cognitive science.
New insights on these subjects will deliver the key to many other problems, and
also new ways of thinking which might help us better realize alternative visions.
The work presented is intended to be a step in the direction of such a vision,
and it is hoped that it may be of use for further progress.
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